Sample average approximation in the two-stage stochastic linear programming problem with quantile criterion
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 134-143
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The two-stage problem of stochastic linear programming with quantile criterion is considered. In this problem, the first stage strategy is deterministic and the second stage strategy is chosen when a realization of the random parameters is known. The properties of the problem are studied, a theorem on the existence of its solution is proved, and a sample average approximation of the problem is constructed. The sample average approximation is reduced to a mixed integer linear programming problem, and a theorem on their equivalence is proved. A procedure for finding an optimal solution of the approximation problem is suggested. A theorem on the convergence of discrete approximations with respect to the value of the objective function and to the optimization strategy is given. We also consider some cases not covered in the theorem.
Keywords: stochastic programming, sample average approximation, mixed integer linear programming.
Mots-clés : quantile criterion
@article{TIMM_2017_23_3_a11,
     author = {S. V. Ivanov and A. I. Kibzun},
     title = {Sample average approximation in the two-stage stochastic linear programming problem with quantile criterion},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {134--143},
     year = {2017},
     volume = {23},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a11/}
}
TY  - JOUR
AU  - S. V. Ivanov
AU  - A. I. Kibzun
TI  - Sample average approximation in the two-stage stochastic linear programming problem with quantile criterion
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 134
EP  - 143
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a11/
LA  - ru
ID  - TIMM_2017_23_3_a11
ER  - 
%0 Journal Article
%A S. V. Ivanov
%A A. I. Kibzun
%T Sample average approximation in the two-stage stochastic linear programming problem with quantile criterion
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 134-143
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a11/
%G ru
%F TIMM_2017_23_3_a11
S. V. Ivanov; A. I. Kibzun. Sample average approximation in the two-stage stochastic linear programming problem with quantile criterion. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 134-143. http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a11/

[1] Shapiro A., Dentcheva D., Ruszczynski A., Lectures on stochastic programming: Modeling and theory, MPS/SIAM Series on Optimization, 9, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2009, 436 pp. | MR | Zbl

[2] Kibzun A. I., Naumov A. V., “Dvukhetapnye zadachi kvantilnogo lineinogo programmirovaniya”, Avtomatika i telemekhanika, 1995, no. 1, 83–93 | Zbl

[3] Norkin V. I., Kibzun A. I., Naumov A. V., “Svedenie zadach dvukhetapnoi veroyatnostnoi optimizatsii s diskretnym raspredeleniem sluchainykh dannykh k zadacham chastichno tselochislennogo programmirovaniya”, Kibernetika i sistemnyi analiz, 50:5 (2014), 34–48 | Zbl

[4] Artstein Z., Wets R.J.-B., “Consistency of minimizers and the SLLN for stochastic programs”, J. Convex Anal., 2:1/2 (1996), 1–17 | MR

[5] Pagnoncelli B. K., Ahmed S., Shapiro A., “Sample average approximation method for chance constrained programming: Theory and Applications”, J. Optim. Theory Appl., 142 (2009), 399–416 | DOI | MR | Zbl

[6] Kibzun A.I., Ivanov S.V., “Convergence of discrete approximations of stochastic programming problems with probabilistic criteria”, Proc. 9th Internat. Conf. DOOR 2016 (Vladivostok, 2016), Ser. Theoretical Computer Science and General Issues, 9869, eds. eds. Kochetov, Yu. et all., Springer, Heidelberg, 2016, 525–537 | DOI | MR

[7] Rockafellar R.T., Wets R.J.-B., Variational analysis, Springer-Verlag, Berlin, 2009, 736 pp. | DOI | MR | Zbl

[8] Eremin I.I., Lineinaya optimizatsiya i sistemy lineinykh neravenstv, Akademiya, M., 2007, 256 pp. | MR

[9] Kibzun A. I., Kan Yu. S., Zadachi stokhasticheskogo programmirovaniya s veroyatnostnymi kriteriyami, Fizmatlit, M., 2009, 372 pp.

[10] Lepp R., “Approximate solution of stochastic programming problems with recourse”, Kybernetika, 23:6 (1987), 476–482 | MR | Zbl