Power wight integrability for sums of moduli of blocks from trigonometric series
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 125-133
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The following problem is studied: find conditions on sequences $\{\gamma(r)\}$, $\{n_j\}$, and $\{v_j\}$ under which, for any sequence $\{b_k\}$ such that $\sum_{k=r}^{\infty}|b_k-b_{k+1}|\leq\gamma(r)$, $b_k\to 0$, the integral $\int_0^\pi U^p(x)/{x^q}dx$ is convergent, where $p>0$, $q\in[1-p;1)$, and $U(x):=\sum_{j=1}^{\infty}\left|\sum_{k=n_j}^{v_j}b_k \sin kx\right|$. In the case $\gamma(r)={B}/{r}$, $B>0$, this problem was studied and solved by S. A. Telyakovskii. In the case where $p\ge 1$, $q=0$, $v_j=n_{j+1}-1$, and the sequence $\{b_k\}$ is monotone, A. S. Belov obtained a criterion for the belonging of the function $U(x)$ to the space $L_p$. In Theorem 1 of the present paper, we give sufficient conditions for the convergence of the above integral, which for $\gamma(r)= B/{r}$, $B>0$, coincide with Telyakovskii's sufficient conditions. In the case $\gamma(r)= O(1/{r})$, Telyakovskii's conditions may be violated, but the application of Theorem 1 guarantees the convergence of the integral. The corresponding examples are given in the last section of the paper. The question on necessary conditions for the convergence of the integral $\int_0^\pi U^p(x)/{x^q}dx$, where $p>0$ and $q\in[1-p;1)$, remains open.
Keywords: trigonometric series, sums of moduli of blocks, power weight.
@article{TIMM_2017_23_3_a10,
     author = {V. P. Zastavnyi and A. S. Levadnaya},
     title = {Power wight integrability for sums of moduli of blocks from trigonometric series},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {125--133},
     year = {2017},
     volume = {23},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a10/}
}
TY  - JOUR
AU  - V. P. Zastavnyi
AU  - A. S. Levadnaya
TI  - Power wight integrability for sums of moduli of blocks from trigonometric series
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 125
EP  - 133
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a10/
LA  - ru
ID  - TIMM_2017_23_3_a10
ER  - 
%0 Journal Article
%A V. P. Zastavnyi
%A A. S. Levadnaya
%T Power wight integrability for sums of moduli of blocks from trigonometric series
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 125-133
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a10/
%G ru
%F TIMM_2017_23_3_a10
V. P. Zastavnyi; A. S. Levadnaya. Power wight integrability for sums of moduli of blocks from trigonometric series. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 125-133. http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a10/

[1] Belov A.S., “O summakh modulei chlenov sgruppirovannogo trigonometricheskogo ryada s monotonnymi koeffitsientami”, Vestn. Ivanov. gos. un-ta. Ser. Biologiya, khimiya, fizika, matematika, 2006, no. 3, 107–121

[2] Belov A.S., “O svoistvakh summy modulei chlenov sgruppirovannogo trigonometricheskogo ryada”, Mat. sb., 203:6 (2012), 35–62 | DOI | Zbl

[3] Belov A.S., Telyakovskii S.A., “Usilenie teorem Dirikhle - Zhordana i Yanga o ryadakh Fure funktsii ogranichennoi variatsii”, Mat. sb., 198:6 (2007), 25–40 | DOI | Zbl

[4] Zastavnyi V.P., “Otsenki summ iz modulei blokov trigonometricheskikh ryadov Fure”, Trudy In-ta matematiki i mekhaniki UrO RAN, 16:1 (2010), 166–179

[5] Zigmund A., Trigonometricheskie ryady, v 2 t., v. 1, Mir, M., 1965, 616 pp. | MR

[6] Leindler L., “On the uniform convergence and boundedness of a certain class of sine series”, Anal. Math., 27:4 (2001), 279–285 | DOI | MR | Zbl

[7] Popov A.Yu., Telyakovskii S.A., “K otsenkam chastnykh summ ryadov Fure funktsii ogranichennoi variatsii”, Izv. vuzov. Matematika, 2000, no. 1, 51–55 | Zbl

[8] Telyakovskii S.A., “O chastnykh summakh ryadov Fure funktsii ogranichennoi variatsii”, Tr. MIAN, 219 (1997), 378–386

[9] Telyakovskii S.A., “Some properties of Fourier series of functions with bounded variation”, East J. Approx., 10:1–2 (2004), 215–218 | MR | Zbl

[10] Telyakovskii S.A., “Nekotorye svoistva ryadov Fure funktsii ogranichennoi variatsii. II”, Trudy In-ta matematiki i mekhaniki UrO RAN, 11:2 (2005), 168–174 | MR | Zbl

[11] Telyakovskii S.A., “O svoistvakh blokov chlenov ryada $\sum \frac {1}{k}\sin kx$”, Ukr. mat. zhurn., 64:5 (2012), 713–718 | Zbl

[12] Telyakovskii S.A., “Dobavlenie k rabote V. P. Zastavnogo “Otsenki summ iz modulei blokov trigonometricheskikh ryadov Fure””, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:4 (2015), 277–281

[13] Trigub R.M., “A note on the paper of Telyakovskii “Certain properties of Fourier series of functions with bounded variation””, East J. Approx., 13:1 (2007), 1–6 | MR

[14] Edvards R., Ryady Fure v sovremennom izlozhenii, v 2 t., v. 1, Mir, M, 1985, 264 pp. | MR