Three extremal problems in the Hardy and Bergman spaces of functions analytic in a disk
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 22-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let a nonnegative measurable function $\gamma(\rho)$ be nonzero almost everywhere on $(0,1)$, and let the product $\rho\gamma(\rho)$ be summable on $(0,1)$. Denote by $\mathcal{B}=B^{p,q}_{\gamma}$, $1\leq p\le \infty$, $1\leq q \infty$, the space of functions $f$ analytic in the unit disk for which the function $M_p^q(f,\rho)\rho\gamma(\rho)$ is summable on $(0,1)$, where $M_p^q(f,\rho)$ is the $p$-mean of $f$ on the circle of radius $\rho$; this space is equipped with the norm $$ \|f\|_{B^{p,q}_{\gamma}}=\|M_p(f,\cdot)\|_{L^q_{\rho\gamma(\rho)}(0,1)}. $$ In the case $q=\infty$, the space $\mathcal{B}=B^{p,\infty}_{\gamma}$ is identified with the Hardy space $H^p$. Using an operator $L$ given by the equality $Lf(z)=\sum_{k=0}^\infty l_k c_k z^k$ on functions $f(z)=\sum_{k=0}^\infty c_k z^k$ analytic in the unit disk, we define the class $$ LB_\gamma^{p,q}(N):=\{f\colon \|Lf\|_{B_\gamma^{p,q}}\le N\},\quad N>0. $$ For a pair of such operators $L$ and $G$, under some constraints, the following three extremal problems are solved. (1) The best approximation of the class $LB_\gamma^{p_1,q_1}(1)$ by the class $GB_\gamma^{p_3,q_3}(N)$ in the norm of the space $B_\gamma^{p_2,q_2}$ is found for $2\le p_{1}\le\infty$, $1\leq p_{2}\leq 2$, $1\leq p_{3}\leq 2$, $1\le q_1=q_2=q_3\le\infty$, and $q_s=2$ or $\infty$. (2) The best approximation of the operator $L$ by the set $\mathcal{L}(N)$, $N>0$, of linear bounded operators from $B_\gamma^{p_1,q_1}$ to $B_\gamma^{p_2,q_2}$ with the norm not exceeding $N$ on the class $GB_\gamma^{p_3,q_3}(1)$ is found for $2\le p_{1}\le\infty$, $1\leq p_{2}\leq 2$, $2\leq p_{3}\leq \infty$, $1\le q_1=q_2=q_3\le\infty$, and $q_s=2$ or $\infty$. (3) Bounds for the modulus of continuity of the operator $L$ on the class $GB_\gamma^{p_3,q_3}(1)$ are obtained, and the exact value of the modulus is found in the Hilbert case.
Keywords: Hardy and Bergman spaces, best approximation of a class by a class, best approximation of an unbounded operator by bounded operators, modulus of continuity of an operator.
@article{TIMM_2017_23_3_a1,
     author = {R. R. Akopyan and M. S. Saidusajnov},
     title = {Three extremal problems in the {Hardy} and {Bergman} spaces of functions analytic in a disk},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {22--32},
     year = {2017},
     volume = {23},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a1/}
}
TY  - JOUR
AU  - R. R. Akopyan
AU  - M. S. Saidusajnov
TI  - Three extremal problems in the Hardy and Bergman spaces of functions analytic in a disk
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 22
EP  - 32
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a1/
LA  - ru
ID  - TIMM_2017_23_3_a1
ER  - 
%0 Journal Article
%A R. R. Akopyan
%A M. S. Saidusajnov
%T Three extremal problems in the Hardy and Bergman spaces of functions analytic in a disk
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 22-32
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a1/
%G ru
%F TIMM_2017_23_3_a1
R. R. Akopyan; M. S. Saidusajnov. Three extremal problems in the Hardy and Bergman spaces of functions analytic in a disk. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 22-32. http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a1/

[1] Arestov V.V., “O nekotorykh ekstremalnykh zadachakh dlya differentsiruemykh funktsii odnoi peremennoi. Priblizhenie funktsii i operatorov”, Tr. MIAN SSSR, 138 (1975), 3–28 | Zbl

[2] Arestov V.V., “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, Uspekhi mat. nauk, 51:6 (1996), 89–124 | DOI | MR | Zbl

[3] Arestov V., Filatova M., “Best approximation of the differentiation operator in the space $L_2$ on the semiaxis”, J. Approx. Theory, 187:1 (2014), 65–81 | DOI | MR | Zbl

[4] Vakarchuk S.B., Vakarchuk M.B., “O multiplikativnykh neravenstvakh tipa Khardi-Littlvuda-Polia dlya analiticheskikh funktsii odnoi i dvukh kompleksnykh peremennykh”, Visnik Dnipropetrovskogo universitetu, ser. Matematika, 18:6/1 (2010), 81–87

[5] Vakarchuk S.B., Vakarchuk M.B., “Neravenstva tipa Kolmogorova dlya analiticheskikh funktsii odnoi i dvukh kompleksnykh peremennykh i ikh prilozhenie k teorii approksimatsii”, Ukr. mat. zhurn., 63:12 (2011), 1579–1601 | MR

[6] Vakarchuk S.B., Vakarchuk M.B., “O neravenstvakh tipa Kolmogorova dlya analiticheskikh v kruge funktsii”, Visnik Dnipropetrovskogo universitetu, ser. Matematika, 17:61 (2012), 82–88

[7] Polia G., Sege G., Zadachi i teoremy iz analiza, v. 1, Nauka, M., 1978, 392 pp. | MR

[8] Saidusainov M.S., “Tochnye neravenstva tipa Kolmogorova dlya funktsii, prinadlezhaschikh vesovomu prostranstvu Bergmana”, Tr. Mezhdunar. letnei mat. shk.-konf. S.B. Stechkina po teorii funktsii (Tadzhikistan, Dushanbe, 15-25 avgusta, 2016), 2016, 217–223

[9] Stechkin S.B., “Nailuchshee priblizhenie lineinykh operatorov”, Mat. zametki, 1:2 (1967), 137–148 | MR | Zbl

[10] Taikov L.V., “O nailuchshem priblizhenii v srednem nekotorykh klassov analiticheskikh funktsii”, Mat. zametki, 1:2 (1967), 155–162 | MR | Zbl

[11] Shabozov M.Sh., Saidusainov M.S., “Neravenstvo tipa Kolmogorova v vesovom prostranstve Bergmana”, Dokl. AN respubliki Tadzhikistan, 50:1 (2007), 14–19 | MR

[12] Shvedenko S.V., “Klassy Khardi i svyazannye s nimi prostranstva analiticheskikh funktsii v edinichnom kruge, polikruge i share”, Itogi nauki i tekhniki. Ser. Mat. analiz, 23 (1985), 3–124 | MR | Zbl