Estimates for best approximations of functions from the logarithmic smoothness class in the Lorentz space
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 3-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Lorentz space $L_{p,\tau}(\mathbb{T}^{m})$ of periodic functions of $m$ variables is considered. The Besov space $B_{p, \tau, \theta}^{0, \alpha}$ of functions with logarithmic smoothness is defined. The aim of the paper is to find the exact order of the best approximation of functions from the class $B_{p, \tau, \theta}^{0, \alpha}$ under different relations between the parameters $p$, $\tau$, and $\theta$. The paper consists of three sections. In the first section, known facts necessary for the proof of the main results are given and several auxiliary statements are proved. In the second section, order-exact estimates for the best approximation of functions from the class $B_{p, \tau, \theta}^{0, \alpha}$ are established in the space $L_{p,\tau}(\mathbb{T}^{m})$. In the third section, an inequality for different metrics of trigonometric polynomials is proved and a sufficient condition for the belonging of a function $f\in L_{p,\tau_{1}}(\mathbb{T}^{m})$ to the space $L_{p,\tau_{2}}(\mathbb{T}^{m})$ in terms of the best approximation is established in the case $1\tau_{2}\tau_{1}$. In contrast to anisotropic Lorentz spaces, the condition is independent of the number $m$ of the variables. Order-exact estimates for the best approximation of functions from the Besov class $B_{p, \tau_{1}, \theta}^{0, \alpha}$ by trigonometric polynomials $L_{p,\tau_{2}}(\mathbb{T}^{m})$ are obtained in the case $1\tau_{2}\tau_{1}$.
Keywords: Lorentz space, best approximation, logarithmic smoothness.
Mots-clés : Besov class
@article{TIMM_2017_23_3_a0,
     author = {G. A. Akishev},
     title = {Estimates for best approximations of functions from the logarithmic smoothness class in the {Lorentz} space},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {3--21},
     year = {2017},
     volume = {23},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a0/}
}
TY  - JOUR
AU  - G. A. Akishev
TI  - Estimates for best approximations of functions from the logarithmic smoothness class in the Lorentz space
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 3
EP  - 21
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a0/
LA  - ru
ID  - TIMM_2017_23_3_a0
ER  - 
%0 Journal Article
%A G. A. Akishev
%T Estimates for best approximations of functions from the logarithmic smoothness class in the Lorentz space
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 3-21
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a0/
%G ru
%F TIMM_2017_23_3_a0
G. A. Akishev. Estimates for best approximations of functions from the logarithmic smoothness class in the Lorentz space. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 3, pp. 3-21. http://geodesic.mathdoc.fr/item/TIMM_2017_23_3_a0/

[1] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974, 332 pp.

[2] Kashin B.S., Temlyakov V.N., “Ob odnoi norme i approksimatsionnykh kharakteristikakh klassov funktsii mnogikh peremennykh”, Metricheskaya teoriya funktsii i smezhnye voprosy analiza, ATsF, M., 1999, 69–99 | MR

[3] DeVore R.A., Riemenschneider S.D., Sharpley R.C., “Weak interpolation in Banach spaces”, J. Func. Anal., 33 (1979), 58–94 | DOI | MR | Zbl

[4] Cobos F., Milman M., “On a limit class of approximation spaces”, Numer. Funct. Anal. Optimiz., 11:1–2 (1990), 11–31 | DOI | MR | Zbl

[5] Cobos F., Dominguez O., “On Besov spaces of logarithmic smoothness and Lippschitz spaces”, J. Math. Anal. Appl., 425:1 (2015), 71–84 | DOI | MR | Zbl

[6] Romanyuk A.S., “Priblizhenie izotropnykh klassov $B_ {p,\theta} ^ r $ periodicheskikh funktsii mnogikh peremennykh v prostranstve $L_ q $”, Zbirnik prats In-tu matematiki NAN Ukraini, 5:1 (2008), 263–278 | Zbl

[7] Stasyuk S.A., “Approksimativnye kharakteristiki analogov klassov Besova s logarifmicheskoi gladkostyu”, Ukr. mat. zhurn., 66:4 (2014), 493–499 | Zbl

[8] Stasyuk S.A., “Kolmogorovskie poperechniki analogov klassov Nikolskogo - Besova s logarifmicheskoi gladkostyu”, Ukr. mat. zhurn., 67:11 (2015), 1579–1584

[9] Dinh Dung, Temlyakov V.N., Ullrich T., “Hyperbolic cross approximation”, 2016, 154 pp., arXiv: 1601.03978

[10] Akishev G., “O vlozhenii nekotorykh klassov funktsii mnogikh peremennykh v prostranstvo Lorentsa”, Izv. AN KazSSR. Cer. fiz.-mat., 3 (1982), 47–51 | Zbl

[11] Sherstneva L.A., “O svoistvakh nailuchshikh priblizhenii Lorentsa i nekotorye teoremy vlozheniya”, Izv. vuzov. Matematika, 10 (1987), 48–58 | MR | Zbl

[12] Lizorkin P.I., “Generalized Holder spaces $B_ {p,\theta} ^ (r) $ and their relations with the Sobolev spaces $L_ p ^ (r) $”, Sib. Mat. Zh., 9:5 (1968), 1127–1152 | DOI | MR | Zbl

[13] Janson S., “On the interpolation of sublinear operators”, Studia Math., 75 (1982), 51–53 | DOI | MR | Zbl

[14] Kokilashvili V., Yildirir Y.E., “On the approximation by trigonometric polynomials in weighted Lorentz spaces”, J. Func. Spaces Appl., 8:1 (2010), 67–86 | DOI | MR | Zbl

[15] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977, 456 pp. | MR

[16] Akishev G., “O poryadkakh $M$-chlennykh priblizhenii klassov funktsii simmetrichnogo prostranstva”, Mat. zhurn., 14:4 (2014), 46–71 | Zbl

[17] Ditzian Z., Prymak A., “Nikol'skii inequalities for Lorentz spaces”, Rocky Mountain Jour. Math., 40:1 (2010), 209–223 | DOI | MR | Zbl

[18] Johansson H., “Embedding of $H_ p ^\omega $ in some Lorentz spases”, Research Report Universite Umea, 6 (1975), 1–36

[19] Temlyakov V.N., “Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi”, Tr. MIAN, 178 (1986), 1–112 | Zbl

[20] Akishev G., “The estimates of approximations classes in the Lorentz space”, AIP Conf. Proc., International conference Advancements in Mathematical Sciences (5-7 November, 2015. Antalya), 2015, 1–4 | DOI | MR

[21] Akishev G., “Otsenki nailuchshikh priblizhenii funktsii klassa logarifmicheskoi gladkosti v prostranstve Lorentsa”, Materialy Mezhdunar. konf. “Voronezhskaya zimnyaya matematicheskaya shkola”, Voronezh, 2017, 12–14