Autoresonance in a model of a terahertz wave generator
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 117-132 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study a model of an electromagnetic wave generator based on a system of coupled Josephson junctions. The model is a chain of coupled sine-Gordon equations for the phases of the electric field in the junctions under dissipation and constant pumping. We find conditions for a resonant field excitation under various parameters of the system. It turns out that the chain of sine-Gordon equations evokes an autoresonance with a certain dependence of the frequency on the magnitude of the Josephson pumping current. We construct an asymptotic expansion for a solution of the chain under a large resonant frequency. The leading terms of the expansion for the phases of the electric field are linear in time, which is typical of an autoresonance in a system of coupled oscillators. The key role here is played by the main resonance equation, which defines the mode of the resonant excitation of the chain. This equation is the equation of a mathematical pendulum with periodically changing mass. A class of solutions of this equation is studied in detail, and classes of separatrix solutions corresponding to the zero velocity of the pendulum are described. It is proved that there exists a separatrix $\pi$-kink type solution on which the autoresonance mode is realized in the original chain of sine-Gordon equations.
Keywords: terahertz band of electromagnetic waves, Josephson junction, sine-Gordon system, kink solution, autoresonance, main resonance equation, asymptotic expansions.
@article{TIMM_2017_23_2_a9,
     author = {O. M. Kiselev and V. Yu. Novokshenov},
     title = {Autoresonance in a model of a terahertz wave generator},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {117--132},
     year = {2017},
     volume = {23},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a9/}
}
TY  - JOUR
AU  - O. M. Kiselev
AU  - V. Yu. Novokshenov
TI  - Autoresonance in a model of a terahertz wave generator
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 117
EP  - 132
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a9/
LA  - ru
ID  - TIMM_2017_23_2_a9
ER  - 
%0 Journal Article
%A O. M. Kiselev
%A V. Yu. Novokshenov
%T Autoresonance in a model of a terahertz wave generator
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 117-132
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a9/
%G ru
%F TIMM_2017_23_2_a9
O. M. Kiselev; V. Yu. Novokshenov. Autoresonance in a model of a terahertz wave generator. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 117-132. http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a9/

[1] L. Ozyuzer [et al.], “Emission of soherent THz radiation from superconductors”, Science, 318:5854 (2007), 1291–1293 | DOI

[2] “Three-dimensional phase-kink state in a thick stack of Josephson junctions and terahertz radiation”, Phys. Review B, 78:13 (2008), 134510 | DOI

[3] S.Han [et al.], “Demonstration of Josephson effect submillimeter wave sources with increased power”, Phys. Lett., 64:11 (1994), 1424–1426 | DOI

[4] Pikovsky A., Rosenblum M., Kurths J., Synchronization: A universal concept in nonlinear sciences, Cambridge University Press, Cambridge, 2003, 432 pp. | MR | Zbl

[5] Bulaevskii L.N., Koshelev A.E., “Radiation due to Josephson oscillations in layered superconductors”, Phys. Rev. Lett., 99:5 (2007), 057002 | DOI

[6] Koshelev A.E., “Alternating dynamic state self-generated by internal resonance in stacks of intrinsic Josephson junctions”, Phys. Rev. B, 78:17 (2008), 174509 | DOI

[7] Revin L.S., Pankratov A.L., “Spectral and power properties of inline long Josephson junctions”, Phys. Rev. B., 86:5 (2012), 054501 | DOI

[8] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, Nauka, M., 1974, 296 pp. | MR

[9] Yn. I. Latyshev [et al.], “Novel features of Josephson flux-flow in Bi-2212: contribution of in-plane dissipation, coherent response to mm-wave radiation, size effect”, Physica C, 367 (2002), 365–375 | DOI

[10] Mitropolskii Yu.A., Problemy asimptoticheskoi teorii nestatsionarnykh kolebanii, Nauka, M., 1964, 431 pp. | MR

[11] Bogolyubov N.N., Mitropolskii Yu.A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Gos. izd. fiz.-mat. lit., M., 408 pp. | MR

[12] Kuzmak G.A., “Asimptoticheskie resheniya nelineinykh differentsialnykh uravnenii vtorogo poryadka s peremennymi koeffitsientami”, Prikl. matematika i mekhanika, 23 (1959), 515–526 | MR | Zbl

[13] Dobrokhotov S.Yu., Maslov V.P., “Konechno-zonnye pochti periodicheskie resheniya v VKB priblizheniyakh”, Itogi nauki. Sovremennye problemy matematiki, 15, Nauka, M., 1980, 3–94 | Zbl

[14] Bourland F.J., Haberman R., “The modulated phase shift for strongly nonlinear, slowly varying and weakly damped oscillators”, SIAM J. Appl. Math., 48:4 (1988), 737–748 | DOI | MR | Zbl

[15] Azhotkin V.D., Babich V.M., “O primenenii metoda dvukhmasshtabnykh razlozhenii k odnochastotnoi zadache teorii nelineinykh kolebanii”, Prikl. matematika i mekhanika, 49:3 (1985), 377–383 | MR | Zbl

[16] Fedoryuk M.V., “Metod VKB dlya nelineinogo uravneniya vtorogo poryadka”, Zhurn. vychisl. matematiki i mat. fiziki, 26:2 (1986), 198–210 | MR

[17] Butikov E.I., “The rigid pendulum - an antique but evergreen physical model”, Eur. J. Phys., 20 (1999), 429–441 | DOI

[18] Kiselev O.M., “Ostsillyatsii okolo separatrisy uravneniya Dyuffinga”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:2 (2012), 141–153

[19] Chirikov B.V., Nelineinyi rezonans, Izd-vo NGU, Novosibirsk, 1977, 82 pp.

[20] Zharnitsky V., Mitkov I., Levi M., “Parametrically forced sine-Gordon equation and domain walls dynamics in ferromagnets”, Phys. Rev. B, 57:9 (1998), 5033 | DOI

[21] Zharnitsky V., Mitkov I., Gronbech-Jensen N., “$\pi$-kinks in strongly ac driven sine-Gordon systems”, Phys. Rev., 58:1 (1998) | DOI | MR

[22] Birnir B., Grauer R., “An explicit description of the global attractor of the damped and driven sine-Gordon equation”, Commun. Math. Phys., 162 (1994), 539–590 | DOI | MR | Zbl