@article{TIMM_2017_23_2_a9,
author = {O. M. Kiselev and V. Yu. Novokshenov},
title = {Autoresonance in a model of a terahertz wave generator},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {117--132},
year = {2017},
volume = {23},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a9/}
}
O. M. Kiselev; V. Yu. Novokshenov. Autoresonance in a model of a terahertz wave generator. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 117-132. http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a9/
[1] L. Ozyuzer [et al.], “Emission of soherent THz radiation from superconductors”, Science, 318:5854 (2007), 1291–1293 | DOI
[2] “Three-dimensional phase-kink state in a thick stack of Josephson junctions and terahertz radiation”, Phys. Review B, 78:13 (2008), 134510 | DOI
[3] S.Han [et al.], “Demonstration of Josephson effect submillimeter wave sources with increased power”, Phys. Lett., 64:11 (1994), 1424–1426 | DOI
[4] Pikovsky A., Rosenblum M., Kurths J., Synchronization: A universal concept in nonlinear sciences, Cambridge University Press, Cambridge, 2003, 432 pp. | MR | Zbl
[5] Bulaevskii L.N., Koshelev A.E., “Radiation due to Josephson oscillations in layered superconductors”, Phys. Rev. Lett., 99:5 (2007), 057002 | DOI
[6] Koshelev A.E., “Alternating dynamic state self-generated by internal resonance in stacks of intrinsic Josephson junctions”, Phys. Rev. B, 78:17 (2008), 174509 | DOI
[7] Revin L.S., Pankratov A.L., “Spectral and power properties of inline long Josephson junctions”, Phys. Rev. B., 86:5 (2012), 054501 | DOI
[8] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, Nauka, M., 1974, 296 pp. | MR
[9] Yn. I. Latyshev [et al.], “Novel features of Josephson flux-flow in Bi-2212: contribution of in-plane dissipation, coherent response to mm-wave radiation, size effect”, Physica C, 367 (2002), 365–375 | DOI
[10] Mitropolskii Yu.A., Problemy asimptoticheskoi teorii nestatsionarnykh kolebanii, Nauka, M., 1964, 431 pp. | MR
[11] Bogolyubov N.N., Mitropolskii Yu.A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Gos. izd. fiz.-mat. lit., M., 408 pp. | MR
[12] Kuzmak G.A., “Asimptoticheskie resheniya nelineinykh differentsialnykh uravnenii vtorogo poryadka s peremennymi koeffitsientami”, Prikl. matematika i mekhanika, 23 (1959), 515–526 | MR | Zbl
[13] Dobrokhotov S.Yu., Maslov V.P., “Konechno-zonnye pochti periodicheskie resheniya v VKB priblizheniyakh”, Itogi nauki. Sovremennye problemy matematiki, 15, Nauka, M., 1980, 3–94 | Zbl
[14] Bourland F.J., Haberman R., “The modulated phase shift for strongly nonlinear, slowly varying and weakly damped oscillators”, SIAM J. Appl. Math., 48:4 (1988), 737–748 | DOI | MR | Zbl
[15] Azhotkin V.D., Babich V.M., “O primenenii metoda dvukhmasshtabnykh razlozhenii k odnochastotnoi zadache teorii nelineinykh kolebanii”, Prikl. matematika i mekhanika, 49:3 (1985), 377–383 | MR | Zbl
[16] Fedoryuk M.V., “Metod VKB dlya nelineinogo uravneniya vtorogo poryadka”, Zhurn. vychisl. matematiki i mat. fiziki, 26:2 (1986), 198–210 | MR
[17] Butikov E.I., “The rigid pendulum - an antique but evergreen physical model”, Eur. J. Phys., 20 (1999), 429–441 | DOI
[18] Kiselev O.M., “Ostsillyatsii okolo separatrisy uravneniya Dyuffinga”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:2 (2012), 141–153
[19] Chirikov B.V., Nelineinyi rezonans, Izd-vo NGU, Novosibirsk, 1977, 82 pp.
[20] Zharnitsky V., Mitkov I., Levi M., “Parametrically forced sine-Gordon equation and domain walls dynamics in ferromagnets”, Phys. Rev. B, 57:9 (1998), 5033 | DOI
[21] Zharnitsky V., Mitkov I., Gronbech-Jensen N., “$\pi$-kinks in strongly ac driven sine-Gordon systems”, Phys. Rev., 58:1 (1998) | DOI | MR
[22] Birnir B., Grauer R., “An explicit description of the global attractor of the damped and driven sine-Gordon equation”, Commun. Math. Phys., 162 (1994), 539–590 | DOI | MR | Zbl