Painleve II equation as a model of a resonant interaction of oscillators
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 104-116 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a system of differential equations that describes the interaction of two weakly connected nonlinear oscillators. The initial data are such that, if the connection is absent, the first oscillator is far from equilibrium and the second oscillator is near equilibrium; the eigenfrequencies of the oscillators are close to each other. The capture into resonance is investigated, when the frequencies of the connected oscillators remain close and the amplitudes of their oscillations undergo significant time variations; in particular, the second oscillator moves far from the equilibrium. We find that the initial stage of the resonance capture is described by a solution of the second Painleve equation. The description is obtained under an asymptotic approximation with respect to a small parameter corresponding to the connection factor.
Keywords: nonlinear equation, small parameter, asymptotics, resonance.
Mots-clés : oscillation
@article{TIMM_2017_23_2_a8,
     author = {L. A. Kalyakin},
     title = {Painleve {II} equation as a model of a resonant interaction of oscillators},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {104--116},
     year = {2017},
     volume = {23},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a8/}
}
TY  - JOUR
AU  - L. A. Kalyakin
TI  - Painleve II equation as a model of a resonant interaction of oscillators
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 104
EP  - 116
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a8/
LA  - ru
ID  - TIMM_2017_23_2_a8
ER  - 
%0 Journal Article
%A L. A. Kalyakin
%T Painleve II equation as a model of a resonant interaction of oscillators
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 104-116
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a8/
%G ru
%F TIMM_2017_23_2_a8
L. A. Kalyakin. Painleve II equation as a model of a resonant interaction of oscillators. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 104-116. http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a8/

[1] Arnold V.I., “Malye znamenateli i problemy ustoichivosti dvizheniya v klassicheskoi i nebesnoi mekhanike”, Uspekhi mat. nauk, 18:6 (114) (1963), 91–192 | MR | Zbl

[2] Treschev D.V., Vvedenie v teoriyu vozmuschenii gamiltonovykh sistem, FAZIS, M., 1998, 181 pp. | MR

[3] Bogolyubov N.N., Mitropolskii Yu.A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974, 503 pp. | MR

[4] Arnold V.I., Kozlov V.V., Neishtadt A.I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, VINITI, M., 1985, 304 pp. | MR

[5] Fajans J., Friedland L., “Autoresonant (non stationary) excitation of a pendulum, Plutinos, plasmas and other nonlinear oscillators”, Am. J. Phys., 69:10 (2001), 1096–1102 | DOI

[6] Kalyakin L.A., “Asimptoticheskii analiz modelei avtorezonansa”, Uspekhi mat. nauk, 63:5 (2008), 3–72 | DOI | MR | Zbl

[7] Kapaev A. A., “Asimptoticheskie formuly dlya funktsii Penleve vtorogo roda”, Teoret. i mat. fizika, 77:3 (1988), 323–332 | MR | Zbl

[8] Dzhakalya G.E., Metody teorii vozmuschenii dlya nelineinykh sistem, Nauka, M., 1979, 319 pp. | MR

[9] Zaslavskii G.M., Sagdeev R.Z., Vvedenie v nelineinuyu fiziku. Ot mayatnika do turbulentnosti i khaosa, Nauka, M., 1988, 368 pp. | MR

[10] Rabinovich M.I., Trubetskov D.I., Vvedenie v teoriyu kolebanii i voln, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.; Izhevsk, 2000, 560 pp.

[11] Chirikov B.V., “Prokhozhdenie nelineinoi kolebatelnoi sistemy cherez rezonans”, Dokl. AN SSSR, 125:5 (1959), 1015–1018 | MR | Zbl

[12] Neishtadt A.I., “O razdelenii dvizhenii v sistemakh s bystro vraschayuscheisya fazoi”, Prikl. matematika i mekhanika, 48:2 (1984), 197–204 | MR

[13] A.R. Its, A.A. Kapaev, V.Yu. Novokshenov, A.S. Fokas, Transendenty Penleve. Metod zadachi Rimana, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.; Izhevsk, 2005, 727 pp.

[14] Neishtadt A.I., “Zakhvat v rezonans i rasseyanie na rezonansakh v dvukhchastotnykh sistemakh”, Tr. MIAN, 250 (2005), 198–218 | Zbl

[15] Neishtadt A.I., “Usrednenie, prokhozhdenie cherez rezonansy i zakhvat v rezonans v dvukhchastotnykh sistemakh”, Uspekhi mat. nauk, 69:5 (2014), 3–80 | DOI | MR | Zbl

[16] Arnold V.I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978, 304 pp. | MR

[17] Kalyakin L.A., “Usrednenie v modeli avtorezonansa”, Mat. zametki, 73:3 (2003), 449–452 | DOI | MR | Zbl

[18] Kudryashov N.A., “The second Painleve equation as a model for the electric field in a semiconductor”, Physics Letters A, 233 (1997), 397–400 | DOI | MR | Zbl

[19] Kalyakin L.A., “Metod usredneniya v zadachakh ob asimptotike na beskonechnosti”, Ufim. mat. zhurn., 1:2 (2009), 29–52 | Zbl