Mots-clés : oscillation
@article{TIMM_2017_23_2_a8,
author = {L. A. Kalyakin},
title = {Painleve {II} equation as a model of a resonant interaction of oscillators},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {104--116},
year = {2017},
volume = {23},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a8/}
}
L. A. Kalyakin. Painleve II equation as a model of a resonant interaction of oscillators. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 104-116. http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a8/
[1] Arnold V.I., “Malye znamenateli i problemy ustoichivosti dvizheniya v klassicheskoi i nebesnoi mekhanike”, Uspekhi mat. nauk, 18:6 (114) (1963), 91–192 | MR | Zbl
[2] Treschev D.V., Vvedenie v teoriyu vozmuschenii gamiltonovykh sistem, FAZIS, M., 1998, 181 pp. | MR
[3] Bogolyubov N.N., Mitropolskii Yu.A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974, 503 pp. | MR
[4] Arnold V.I., Kozlov V.V., Neishtadt A.I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, VINITI, M., 1985, 304 pp. | MR
[5] Fajans J., Friedland L., “Autoresonant (non stationary) excitation of a pendulum, Plutinos, plasmas and other nonlinear oscillators”, Am. J. Phys., 69:10 (2001), 1096–1102 | DOI
[6] Kalyakin L.A., “Asimptoticheskii analiz modelei avtorezonansa”, Uspekhi mat. nauk, 63:5 (2008), 3–72 | DOI | MR | Zbl
[7] Kapaev A. A., “Asimptoticheskie formuly dlya funktsii Penleve vtorogo roda”, Teoret. i mat. fizika, 77:3 (1988), 323–332 | MR | Zbl
[8] Dzhakalya G.E., Metody teorii vozmuschenii dlya nelineinykh sistem, Nauka, M., 1979, 319 pp. | MR
[9] Zaslavskii G.M., Sagdeev R.Z., Vvedenie v nelineinuyu fiziku. Ot mayatnika do turbulentnosti i khaosa, Nauka, M., 1988, 368 pp. | MR
[10] Rabinovich M.I., Trubetskov D.I., Vvedenie v teoriyu kolebanii i voln, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.; Izhevsk, 2000, 560 pp.
[11] Chirikov B.V., “Prokhozhdenie nelineinoi kolebatelnoi sistemy cherez rezonans”, Dokl. AN SSSR, 125:5 (1959), 1015–1018 | MR | Zbl
[12] Neishtadt A.I., “O razdelenii dvizhenii v sistemakh s bystro vraschayuscheisya fazoi”, Prikl. matematika i mekhanika, 48:2 (1984), 197–204 | MR
[13] A.R. Its, A.A. Kapaev, V.Yu. Novokshenov, A.S. Fokas, Transendenty Penleve. Metod zadachi Rimana, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.; Izhevsk, 2005, 727 pp.
[14] Neishtadt A.I., “Zakhvat v rezonans i rasseyanie na rezonansakh v dvukhchastotnykh sistemakh”, Tr. MIAN, 250 (2005), 198–218 | Zbl
[15] Neishtadt A.I., “Usrednenie, prokhozhdenie cherez rezonansy i zakhvat v rezonans v dvukhchastotnykh sistemakh”, Uspekhi mat. nauk, 69:5 (2014), 3–80 | DOI | MR | Zbl
[16] Arnold V.I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978, 304 pp. | MR
[17] Kalyakin L.A., “Usrednenie v modeli avtorezonansa”, Mat. zametki, 73:3 (2003), 449–452 | DOI | MR | Zbl
[18] Kudryashov N.A., “The second Painleve equation as a model for the electric field in a semiconductor”, Physics Letters A, 233 (1997), 397–400 | DOI | MR | Zbl
[19] Kalyakin L.A., “Metod usredneniya v zadachakh ob asimptotike na beskonechnosti”, Ufim. mat. zhurn., 1:2 (2009), 29–52 | Zbl