Two-parameter asymptotics in a bisingular Cauchy problem for a parabolic equation
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 94-103
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Cauchy problem for a quasilinear parabolic equation with a small parameter $\varepsilon$ at the highest derivative is considered. The initial function, which has the form of a smoothed step, depends on a “stretched” variable $x/\rho$, where $\rho$ is another small parameter. This problem statement is of interest in applications as a model of propagation of nonlinear waves in physical systems in the presence of small dissipation. In the case corresponding to a compression wave, asymptotic solutions of the problem are constructed in the parameters $\varepsilon$ and $\rho$ independently tending to zero. It is assumed that $\varepsilon/\rho\to 0$. Far from the line of discontinuity of the limit solution, asymptotic solutions are constructed in the form of series in powers of $\varepsilon$ and $\rho$. In a small domain of linear approximation, an asymptotic solution is constructed in the form of a series in powers of the ratio $\rho/\varepsilon$. The coefficients of the inner expansion are found from a recurrence chain of initial value problems. The asymptotics of these coefficients at infinity is studied. The time of reconstruction of the scale of the inner space variable is found.
Mots-clés : parabolic equation
Keywords: Cauchy problem, asymptotics.
@article{TIMM_2017_23_2_a7,
     author = {S. V. Zakharov},
     title = {Two-parameter asymptotics in a bisingular {Cauchy} problem for a parabolic equation},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {94--103},
     year = {2017},
     volume = {23},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a7/}
}
TY  - JOUR
AU  - S. V. Zakharov
TI  - Two-parameter asymptotics in a bisingular Cauchy problem for a parabolic equation
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 94
EP  - 103
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a7/
LA  - ru
ID  - TIMM_2017_23_2_a7
ER  - 
%0 Journal Article
%A S. V. Zakharov
%T Two-parameter asymptotics in a bisingular Cauchy problem for a parabolic equation
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 94-103
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a7/
%G ru
%F TIMM_2017_23_2_a7
S. V. Zakharov. Two-parameter asymptotics in a bisingular Cauchy problem for a parabolic equation. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 94-103. http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a7/

[1] Arnold V.I., Osobennosti kaustik i volnovykh frontov, Fazis, M., 1996, 334 pp. | MR

[2] Suleimanov B.I., “O reshenii uravneniya Kortevega - de Vriza, voznikayuschego vblizi tochki oprokidyvaniya v zadachakh s maloi dispersiei”, Pisma v zhurn. eksperiment. i teoret. fiziki, 58:11 (1993), 906–910 | MR

[3] Dubrovin B., Elaeva M., “On the critical behavior in nonlinear evolutionary PDEs with small viscosity”, Russ. J. Math. Phys., 19:4 (2012), 449–460 | DOI | MR | Zbl

[4] Garifullin R.N., Suleimanov B.I., “Ot slabykh razryvov k bezdissipativnym udarnym volnam”, Zhurn. eksperiment. i teoret. fiziki, 137:1 (2010), 149–164

[5] Teodorovich E.V., “Metod renormalizatsionnoi gruppy v zadachakh mekhaniki”, Prikl. matematika i mekhanika, 68:2 (2004), 335–367 | MR | Zbl

[6] B. Dubrovin, T. Grava, C. Klein, A. Moro, “On critical vehaviour in systems of Hamiltonian partial differential equations”, J. Nonlinear. Sci., 25:3 (2015), 631–707 | DOI | MR | Zbl

[7] Zakharov S.V., “Singulyarnye asimptotiki v zadache Koshi dlya parabolicheskogo uravneniya s malym parametrom”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:1 (2015), 97–104 | MR

[8] Ilin A.M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp. | MR

[9] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977, 624 pp.

[10] Gurbatov S.N., Malakhov A.N., Saichev A.I., Nelineinye sluchainye volny v sredakh bez dispersii, Nauka, M., 1990, 216 pp. | MR

[11] Kudashev V.R., Suleimanov B.I., “Vliyanie maloi dissipatsii na protsessy zarozhdeniya odnomernykh udarnykh voln”, Prikl. matematika i mekhanika, 65:3 (2001), 456–466 | MR | Zbl

[12] Ladyzhenskaya O.A., Solonnikov V.A., Uraltseva N.N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp. | MR

[13] Ilin A.M., “Ob asimptotike reshenii odnoi zadachi s malym parametrom”, Izv. AN SSSR. Ser. matematicheskaya, 53:2 (1989), 258–275 | MR

[14] Zakharov S.V., “Zadacha Koshi dlya kvazilineinogo parabolicheskogo uravneniya s dvumya malymi parametrami”, Dokl. Akad. Nauk, 422:6 (2008), 733–734 | Zbl

[15] Zakharov S.V., “Two-parameter asymptotics in the Cauchy problem for a quasi-linear parabolic equation”, Asympt. Analysis, 63:1–2 (2009), 49–54 | DOI | MR | Zbl

[16] Zakharov S.V., “Zadacha Koshi dlya kvazilineinogo parabolicheskogo uravneniya s bolshim nachalnym gradientom i maloi vyazkostyu”, Zhurn. vychisl. matem. i matem. fiziki, 50:4 (2010), 699–706 | MR | Zbl

[17] Godunov S.K., Uravneniya matematicheskoi fiziki, Nauka, M., 1971, 416 pp. | MR

[18] Oleinik O.A., “Razryvnye resheniya nelineinykh differentsialnykh uravnenii”, Uspekhi mat. nauk, 12:3(75) (1957), 3–73 | MR | Zbl

[19] Zakharov S.V., “O raspredelenii tepla v beskonechnom sterzhne”, Mat. zametki, 80:3 (2006), 379–385 | DOI | MR | Zbl

[20] Danilin A.R., “Asimptotika optimalnogo znacheniya funktsionala kachestva pri bystrostabiliziruyuschemsya nepryamom upravlenii v singulyarnom sluchae”, Zhurn. vychisl. matematiki i mat. fiziki, 46:12 (2006), 2166–2177 | MR

[21] Ilin A.M., Danilin A.R., Asimptoticheskie metody v analize, Fizmatlit, M., 2009, 248 pp.