Asymptotics of the velocity potential of an ideal fluid flowing around a thin body
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 77-93 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the Neumann problem outside a small neighborhood of a planar disk in three-dimensional space. The surface of this neighborhood is assumed to be smooth, and its thickness is characterized by a small parameter $\varepsilon$. A uniform asymptotic expansion of the solution of this problem with respect to $\varepsilon$ is constructed by the matching method. Since the problem turned out to be bisingular, an additional inner asymptotic expansion in the so-called stretched variables was constructed near the edge of the disk. A physical interpretation of the solution of this boundary value problem is the velocity potential of a laminar flow of an ideal fluid around a thin body, which is the neighborhood of the disk. It is assumed that this flow has unit velocity at a large distance from the disk, which is equivalent to the following condition for the potential: $u(x_1,x_2,x_3,\varepsilon)=x_3+O(r^{-2})$ as $r\to\infty$, where $r$ is the distance to the origin. The boundary condition of this problem is the impermeability of the surface of the body: $\partial u/\partial\mathbf{n}=0$ at the boundary. After subtracting $x_3$ from the solution $u(x_1,x_2,x_3,\varepsilon)$, we get a boundary value problem for the potential $\widetilde{u}(x_1,x_2,x_3,\varepsilon)$ of the perturbed flow of the motion. Since the integral of the function $\partial\widetilde{u}/\partial\mathbf{n}$ over the surface of the body is zero, we have $\widetilde{u}(x_1,x_2,x_3,\varepsilon)=O(r^{-2})$ as $r\to\infty$. Hence, all the coefficients of the outer asymptotic expansion with respect to $\varepsilon$ have the same behavior at infinity. However, these coefficients have increasing singularities at the approach to the edge of the disk, which implies the bisingularity of the problem.
Keywords: boundary value problem, asymptotic expansion, matching method, thin body, laminar flow, ideal fluid.
Mots-clés : Laplace equation
@article{TIMM_2017_23_2_a6,
     author = {A. A. Ershov and J. A. Krutova},
     title = {Asymptotics of the velocity potential of an ideal fluid flowing around a thin body},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {77--93},
     year = {2017},
     volume = {23},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a6/}
}
TY  - JOUR
AU  - A. A. Ershov
AU  - J. A. Krutova
TI  - Asymptotics of the velocity potential of an ideal fluid flowing around a thin body
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 77
EP  - 93
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a6/
LA  - ru
ID  - TIMM_2017_23_2_a6
ER  - 
%0 Journal Article
%A A. A. Ershov
%A J. A. Krutova
%T Asymptotics of the velocity potential of an ideal fluid flowing around a thin body
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 77-93
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a6/
%G ru
%F TIMM_2017_23_2_a6
A. A. Ershov; J. A. Krutova. Asymptotics of the velocity potential of an ideal fluid flowing around a thin body. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 77-93. http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a6/

[1] Ilin A.M., “Kraevaya zadacha dlya ellipticheskogo uravneniya vtorogo poryadka v oblasti s uzkoi schelyu. 1. Dvumernyi sluchai”, Mat. sb., 99 (141):4 (1976), 514–537 | MR | Zbl

[2] Ilin A.M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 334 pp. | MR

[3] Ershov A.A., “Asimptotika resheniya zadachi Neimana vne maloi okrestnosti otrezka”, Sb. tr., v. 2, Fizika. Khimiya. Matematika, eds. otv. redaktory E.G. Ekomasov, B.N. Khabibullin, RITs BashGU, Ufa, 2015, 177–182

[4] Ershov A.A., “Zadacha ob obtekanii tonkogo diska”, Ser. Matematika. Mekhanika, v. 14, Vestn. ChelGU, 27 (242), 2011, 61–78

[5] Loitsyanskii L.G., Mekhanika zhidkosti i gaza, Nauka, M., 1950, 676 pp. | MR

[6] Smait V., Elektrostatika i elektrodinamika, Izd-vo inostr. lit-ry, M., 1954, 604 pp.

[7] Ilin A.M., Uravneniya matematicheskoi fiziki, Nauka, M., 2005, 192 pp.

[8] Oleinik O.A., “Ob ustoichivosti zadachi Neimana”, Uspekhi mat. nauk, 11:1 (67) (1956), 223–225 | MR | Zbl

[9] Fedoryuk M.V., “Zadacha Dirikhle dlya operatora Laplasa vo vneshnosti tonkogo tela vrascheniya”, Tr. seminara S.L. Soboleva, no. 1, 1980, 113–131 | Zbl