Asymptotics of a solution to a singularly perturbed time-optimal control problem
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 67-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the study of singularly perturbed optimal control problems, asymptotic solutions to the boundary value problem resulting from the optimality condition for the control are constructed by means of the well-known and well-developed method of boundary functions. This approach is effective for problems with smooth controls from an open domain. Problems with a closed bounded domain of the control have been investigated less thoroughly. The cases that are usually considered involve situations where the control is a scalar function or a multidimensional function with values in a convex polyhedron. In the latter case, since the optimal control is a piecewise constant function with values at the vertices of the polyhedron, it is important to describe the asymptotic behavior of the switching points of the optimal control. In this paper we investigate a time-optimal control problem for a singularly perturbed linear autonomous system with smooth geometric constraints on the control in the form of a ball. The main difference of this case from systems with fast and slow variables studied earlier is that in this case the matrix at the fast variables is a multidimensional analog of the second-order Jordan cell with zero eigenvalue and, thus, does not satisfy the standard condition of asymptotic stability. The solvability of the problem is proved. Power asymptotic expansions of the optimal time and optimal control with respect to a small parameter at the derivatives in the equations of the system are constructed and substantiated.
Keywords: optimal control, time-optimal control problem, asymptotic expansion, singularly perturbed problems, small parameter.
@article{TIMM_2017_23_2_a5,
     author = {A. R. Danilin and O. O. Kovrizhnykh},
     title = {Asymptotics of a solution to a singularly perturbed time-optimal control problem},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {67--76},
     year = {2017},
     volume = {23},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a5/}
}
TY  - JOUR
AU  - A. R. Danilin
AU  - O. O. Kovrizhnykh
TI  - Asymptotics of a solution to a singularly perturbed time-optimal control problem
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 67
EP  - 76
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a5/
LA  - ru
ID  - TIMM_2017_23_2_a5
ER  - 
%0 Journal Article
%A A. R. Danilin
%A O. O. Kovrizhnykh
%T Asymptotics of a solution to a singularly perturbed time-optimal control problem
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 67-76
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a5/
%G ru
%F TIMM_2017_23_2_a5
A. R. Danilin; O. O. Kovrizhnykh. Asymptotics of a solution to a singularly perturbed time-optimal control problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 67-76. http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a5/

[1] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp. | MR

[2] Krasovskii N.N., Teoriya upravleniya dvizheniem. Lineinye sistemy, Nauka, M., 1968, 476 pp. | MR

[3] Vasileva A.B., Dmitriev M.G., “Singulyarnye vozmuscheniya v zadachakh optimalnogo upravleniya”, Itogi nauki i tekhniki. Ser. Matematicheskii analiz, 20, VINITI, M., 1982, 3–77

[4] Kokotovic P.V., Haddad A.H., “Controllability and time-optimal control of systems with slow and fast modes”, IEEE Trans. Automat. Control, 20:1 (1975), 111–113 | DOI | MR | Zbl

[5] Donchev A., Sistemy optimalnogo upravleniya: Vozmuscheniya, priblizheniya i analiz chuvstvitelnosti, Mir, M., 1987, 156 pp. | MR

[6] Gichev T.R., Donchev A.L., “Skhodimost resheniya lineinoi singulyarno vozmuschennoi zadachi bystrodeistviya”, Prikl. matematika i mekhanika, 43:3 (1979), 466–474 | MR | Zbl

[7] Danilin A.R., Ilin A.M., “O strukture resheniya odnoi vozmuschennoi zadachi bystrodeistviya”, Fundament. i prikl. matematika, 4:3 (1998), 905–926 | MR | Zbl

[8] Danilin A.R., Kovrizhnykh O.O., “O zavisimosti zadachi bystrodeistviya dlya lineinoi sistemy ot dvukh malykh parametrov”, Matematika, mekhanika, informatika, Vest. ChelGU, 14, no. 27, 2011, 46–60

[9] Danilin A.R., Kovrizhnykh O.O., “O zadache upravleniya tochkoi maloi massy v srede bez soprotivleniya”, Dokl. RAN, 451:6 (2013), 612–614 | DOI | Zbl

[10] Erdelui A., Wyman M., “The asymptotic evaluation of certain integrals”, Arsh. Rational Mech. Anal., 14 (1963), 217–260 | DOI | MR

[11] Li E.B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp. | MR

[12] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976, 544 pp. | MR

[13] Kalinin A.I., Semenov K.V., “Asimptoticheskii metod optimizatsii lineinykh singulyarno vozmuschennykh sistem s mnogomernymi upravleniyami”, Zhurn. vychisl. matematiki i mat. fiziki, 44:3 (2004), 432–443 | MR | Zbl

[14] Danilin A.R., Kovrizhnykh O.O., “Asimptotika optimalnogo vremeni v singulyarno vozmuschennoi lineinoi zadache bystrodeistviya”, Tr. Instituta matematiki i mekhaniki UrO RAN, 16:1 (2010), 63–75 | MR