The Yekaterinburg heritage of Arlen Mikhailovich Il'in
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 42-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The main problems formulated by A.M.Il'in and solved by his disciples working now in Yekaterinburg are considered. These problems are related to the method of matched asymptotic expansions used for finding asymptotic solutions of equations with a singular dependence on a small parameter. In addition to boundary value problems for equations of mathematical physics, we consider systems of nonlinear equations and systems of linear equations depending on two small parameters. We also consider problems of finding asymptotic expansions for fundamental solutions of parabolic equations and optimal control problems depending on a small parameter.
Keywords: singularly perturbed problems, asymptotic expansions, small parameter, method of matched asymptotic expansions, optimal control.
@article{TIMM_2017_23_2_a4,
     author = {A. R. Danilin and S. V. Zakharov and O. O. Kovrizhnykh and E. F. Lelikova and I. V. Pershin and O. Yu. Khachay},
     title = {The {Yekaterinburg} heritage of {Arlen} {Mikhailovich} {Il'in}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {42--66},
     year = {2017},
     volume = {23},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a4/}
}
TY  - JOUR
AU  - A. R. Danilin
AU  - S. V. Zakharov
AU  - O. O. Kovrizhnykh
AU  - E. F. Lelikova
AU  - I. V. Pershin
AU  - O. Yu. Khachay
TI  - The Yekaterinburg heritage of Arlen Mikhailovich Il'in
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 42
EP  - 66
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a4/
LA  - ru
ID  - TIMM_2017_23_2_a4
ER  - 
%0 Journal Article
%A A. R. Danilin
%A S. V. Zakharov
%A O. O. Kovrizhnykh
%A E. F. Lelikova
%A I. V. Pershin
%A O. Yu. Khachay
%T The Yekaterinburg heritage of Arlen Mikhailovich Il'in
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 42-66
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a4/
%G ru
%F TIMM_2017_23_2_a4
A. R. Danilin; S. V. Zakharov; O. O. Kovrizhnykh; E. F. Lelikova; I. V. Pershin; O. Yu. Khachay. The Yekaterinburg heritage of Arlen Mikhailovich Il'in. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 42-66. http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a4/

[1] Ilin A.M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp. | MR

[2] Ilin A.M., Lelikova E.F., “Metod sraschivaniya asimptoticheskikh razlozhenii dlya uravnenii $\varepsilon\Delta u - a(x,y) u_y = f(x,y)$ v pryamougolnike”, Mat. sb., 96:4 (1975), 568–583 | MR | Zbl

[3] Lelikova E.F., “Ob asimptotike resheniya ellipticheskogo uravneniya vtorogo poryadka s malym parametrom pri odnoi iz starshikh proizvodnykh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 9:1 (2003), 107–119

[4] Lelikova E.F., “Ob asimptotike resheniya uravneniya s malym parametrom v oblasti s uglovymi tochkami”, Mat. sb., 201:10 (2010), 93–108 | DOI | MR | Zbl

[5] Lelikova E.F., “Ob asimptotike resheniya ellipticheskogo uravneniya vtorogo poryadka s malym parametrom pri odnoi iz starshikh proizvodnykh.”, Tr. Mosk. mat. ob-va, 71, 2010, 162–199 | MR | Zbl

[6] Lelikova E.F., “Ob asimptotike resheniya uravneniya s malym parametrom v okrestnosti tochki peregiba granitsy”, Dokl. AN, 447:2 (2012), 136–139 | MR | Zbl

[7] Pershin I.V., “Postroenie asimptotiki funktsii Grina v okrestnosti osoboi tochki”, Differents. uravneniya, 37:6 (2001), 842–843 | MR | Zbl

[8] Pershin I.V., “Asimptotika resheniya uravneniya teploprovodnosti s osobennostyu na granitse”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:1 (2012), 268–272

[9] Zakharov S.V., “Zadacha Koshi dlya kvazilineinogo parabolicheskogo uravneniya s bolshim nachalnym gradientom i maloi vyazkostyu”, Zh. vychisl. matematiki i mat. fiziki, 50:4 (2010), 699–706 | MR | Zbl

[10] Zakharov S.V., Ilin A.M., “Ot slabogo razryva k gradientnoi katastrofe”, Mat. sb., 192:10 (2001), 3–18 | DOI | MR | Zbl

[11] Zakharov S.V., “Asimptoticheskoe reshenie odnoi zadachi Koshi v okrestnosti gradientnoi katastrofy”, Mat. sb., 197:6 (2006), 47–62 | DOI | Zbl

[12] Zakharov S.V., “Osobennosti $A$ i $B$ tipov v asimptoticheskom analize reshenii parabolicheskogo uravneniya”, Funkts. analiz. i ego prilozheniya, 49:4 (2015), 82–85 | DOI | Zbl

[13] Ilin A.M., Khachai O.Yu., “Singulyarnaya nachalnaya zadacha dlya sistemy obyknovennykh differentsialnykh uravnenii s malym parametrom”, Dokl. AN, 422:4 (2008), 455–458 | Zbl

[14] Ilin A.M., Leonychev Yu.A., Khachai O.Yu., “Asimptotika resheniya sistemy differentsialnykh uravnenii s malym parametrom i s osoboi nachalnoi tochkoi”, Mat. sb., 201:1 (2010), 81–102 | DOI | MR | Zbl

[15] Ilin A.M., Khachai O.Yu., “Struktura pogranichnykh sloev v singulyarnykh zadachakh”, Dokl. AN, 445:3 (2012), 256–258 | Zbl

[16] Ilin A.M., Kovrizhnykh O.O., “Asimptotika resheniya sistemy lineinykh uravnenii s dvumya malymi parametrami”, Dokl. AN, 396:1 (2004), 23–24 | MR | Zbl

[17] Kovrizhnykh O.O., “Asimptoticheskoe razlozhenie resheniya singulyarno vozmuschennoi sistemy lineinykh uravnenii”, Differents. uravneniya, 41:10 (2005), 1322–1331 | MR | Zbl

[18] Ilin A.M., Danilin A.R., Asimptoticheskie metody v analize, Fizmatlit, M., 2009, 248 pp.

[19] Danilin A.R., “Asimptotika optimalnogo znacheniya funktsionala kachestva pri bystro stabiliziruyuschemsya nepryamom upravlenii v singulyarnom sluchae”, Zhurn. vychisl. matematiki i mat. fiziki, 46:12 (2006), 2166–2177 | MR

[20] Danilin A.R., Kovrizhnykh O.O., “O zadache upravleniya tochkoi maloi massy v srede bez soprotivleniya”, Dokl. AN, 451:6 (2013), 612–614 | DOI | Zbl

[21] Danilin A.R., Zorin A.P., “Asimptoticheskoe razlozhenie resheniya zadachi optimalnogo granichnogo upravleniya”, Dokl. AN, 440:4 (2011), 1–4

[22] Danilin A.R., “Optimalnoe granichnoe upravlenie v oblasti s maloi polostyu”, Ufim. mat. zhurn, 2012, no. 2, 87–100 | MR