Analytic solutions of stationary complex convection describing a shear stress field of different signs
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 32-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study layered convection of a viscous incompressible fluid. The flow of an incompressible medium is described by the overdetermined system of the Oberbeck-Boussinesq equations. An exact solution of the overdetermined system of equations is found. The solution belongs to the Lin-Sidorov-Aristov class. In this class the velocities are homogeneous with respect to the horizontal variables. The pressure and temperature fields are linear functions of the coordinates $x$ and $y$. The use of the Lin-Sidorov-Aristov class preserves the nonlinearity of the motion equations only in the heat equation. The boundary value problem is studied for the Benard-Marangoni convection with heat transfer at the free boundary. The heat transfer is determined by the Newton-Richman law. The convective motion of a fluid is characterized by the existence of a layer thickness at which the friction force (the shear stress) vanishes at an interior point of the fluid layer. We give constraints on the control parameters that determine the no-slip conditions for the layers in the cases of thermal and solutal convective flows.
Mots-clés : Benard-Marangoni convection, exact solution
Keywords: boundary condition of the third kind, shear stress.
@article{TIMM_2017_23_2_a3,
     author = {A. V. Gorshkov and E. Yu. Prosviryakov},
     title = {Analytic solutions of stationary complex convection describing a shear stress field of different signs},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {32--41},
     year = {2017},
     volume = {23},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a3/}
}
TY  - JOUR
AU  - A. V. Gorshkov
AU  - E. Yu. Prosviryakov
TI  - Analytic solutions of stationary complex convection describing a shear stress field of different signs
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 32
EP  - 41
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a3/
LA  - ru
ID  - TIMM_2017_23_2_a3
ER  - 
%0 Journal Article
%A A. V. Gorshkov
%A E. Yu. Prosviryakov
%T Analytic solutions of stationary complex convection describing a shear stress field of different signs
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 32-41
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a3/
%G ru
%F TIMM_2017_23_2_a3
A. V. Gorshkov; E. Yu. Prosviryakov. Analytic solutions of stationary complex convection describing a shear stress field of different signs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 32-41. http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a3/

[1] Lin C.C., “Note on a class of exact solutions in magneto-hydrodynamics”, Arch. Rational Mech. Anal., 1 (1958), 391–395 | DOI | MR | Zbl

[2] Sidorov A.F., “Ob odnom klasse reshenii uravnenii gazovoi dinamiki i estestvennoi konvektsii”, Chislennye i analiticheskie metody resheniya zadach mekhaniki sploshnoi sredy, cb. nauch. tr. NTs AN SSSR, UNTs AN SSSR, Sverdlovsk, 1981, 101–117

[3] A.I.Korotkii [i dr.], “O razrabotkakh analiticheskikh i chislennykh metodov resheniya zadach mekhaniki sploshnoi sredy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:2 (2013), 203–215 | MR

[4] Aristov S.N., Prosviryakov E.Yu., “Novyi klass tochnykh reshenii trekhmernykh uravnenii termodiffuzii”, Teoret. osnovy khimich. tekhnologii, 50:3 (2016), 294–301 | DOI

[5] Pukhnachev V.V., “Simmetrii v uravneniyakh Nave - Stoksa”, Uspekhi mekhaniki, 2006, no. 6, 3–76

[6] Ryzhkov I.I., Termodiffuziya v smesyakh: uravneniya, simmetrii, resheniya i ikh ustoichivost, Izdatelstvo SO RAN, Novosibirsk, 2013, 200 pp.

[7] Sidorov A.F., “O dvukh klassakh reshenii uravnenii mekhaniki zhidkosti i gaza i ikh svyazi s teoriei beguschikh voln”, Prikl. mekhanika i tekhnich. fizika, 1989, no. 2, 34–40

[8] Aristov S.N., Prosviryakov E.Yu., Spevak L.F., “Nestatsionarnaya sloistaya teplovaya i kontsentratsionnaya konvektsiya Marangoni vyazkoi neszhimaemoi zhidkosti”, Vychisl. mekhanika sploshnykh sred, 8:4 (2015), 445–456 | DOI

[9] Aristov S.N., Prosviryakov E.Yu., Spevak L.F., “Nestatsionarnaya konvektsiya Benara - Marangoni sloistykh techenii vyazkoi neszhimaemoi zhidkosti”, Teoret. osnovy khimich. tekhnologii, 50:2 (2016), 137–146 | DOI

[10] Aristov S. N., Shvarts K. G., Vikhrevye techeniya v tonkikh sloyakh zhidkosti, VyatGU, Kirov, 2011, 207 pp.

[11] Landau L.D., Lifshits E.M., Teoreticheskaya fizika, v. 6, Gidrodinamika, Nauka, M., 2006, 736 pp. | MR

[12] Gorshkov A.V., Prosviryakov E.Y., “Complex Stationary Convection with Third-Kind Boundary Conditions at the Boundaries of a Fluid Layer”, accessed: 12.09.2016, Diagnostics, Resource and Mechanics of materials and structures, 2016, no. 2, 34–47 http://dream-journal.org/issues/2016-2/2016-281.html | DOI