Voir la notice du chapitre de livre
@article{TIMM_2017_23_2_a25,
author = {R. Boukoucha},
title = {Integrability and invariant algebraic curves for a class of {Kolmogorov} systems},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {311--318},
year = {2017},
volume = {23},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a25/}
}
R. Boukoucha. Integrability and invariant algebraic curves for a class of Kolmogorov systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 311-318. http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a25/
[1] Bendjeddou A., Llibre J., Salhi T., “Dynamics of the differential systems with homogenous nonlinearity and a star node”, J. Differential Equations, 254 (2013), 3530–3537 | DOI | MR | Zbl
[2] Boukoucha R., “On the dynamics of a class of Kolmogorov systems”, J. Sib. Fed. Univ. Math. Phys., 9:1 (2016), 11–16 | DOI | MR
[3] Boukoucha R., “On the dynamics of a class of Kolmogorov systems”, Sib. Elektron. Mat. Izv., 13 (2016), 734–739 | DOI | MR
[4] Boukoucha R., Bendjeddou A., “On the dynamics of a class of rational Kolmogorov systems”, J. of Nonlinear Math. Phys., 23:1 (2016), 21–27 | DOI | MR
[5] Busse F.H., “Transition to turbulence via the statistical limit cycle route”, Ser. SSSYN, 11, Springer-Verlag, Berlin, 1978, 36–44 | DOI
[6] Cairo L., Llibre J., “Phase portraits of cubic polynomial vector fields of Lotka-Volterra type having a rational first integral of degree 2”, J. Phys. A: Math. Theor., 40 (2007), 6329–6348 | DOI | MR | Zbl
[7] Chavarriga J., Grau M., “A family of non-Darboux-integrable quadratic polynomial differential systems with algebraic solutions of arbitrarily high degree”, Appl. Math. Lett., 16:6 (2003), 833–837 | DOI | MR | Zbl
[8] Christopher C. , Llibre J., “Integrability via invariant algebraic curves for planar polynomial differential systems”, Ann. Differential Equations, 16:1 (2000), 5–19 | MR | Zbl
[9] Darboux G., “Memoire sur les equations diffe rentielles algebriques du premier ordre et du premier degre”, Bull. Sci. Math. (2), 2:1 (1878), 60–96; 123-144; 151–200 | Zbl
[10] Dumortier F., Llibre J., Artes J.,, Qualitative Theory of Planar Differential Systems, ser. Qualitative, Springer, Berlin, 2006, 298 pp. | MR | Zbl
[11] Gao P., “Hamiltonian structure and first integrals for the Lotka-Volterra systems”, Phys. Lett. A, 273:1–2 (2000), 85–96 | DOI | MR | Zbl
[12] Gasull A., Giacomini H., Torregrosa J., “Explicit non-algebraic limit cycles for polynomial systems”, J. Comput. Appl. Math., 200:1 (2007), 448–457 | DOI | MR | Zbl
[13] Bull. Amer. Math. Soc., 8, 1902, 437–479 | DOI | MR | Zbl | Zbl
[14] Huang X., “Limit in a Kolmogorov-type model”, Internat J. of Mathematics and Mathematical Sciences, 13:3 (1990), 555–566 | DOI | MR | Zbl
[15] Laval G., Pellat R., Plasma Physics, Proc. of Summer School of Theoretical Physics, Gordon and Breach, New York, 1975
[16] Li C., Llibre J., “The cyclicity of period annulus of a quadratic reversible Lotka-Volterra system”, Nonlinearity, 22:12 (2009), 2971–2979 | DOI | MR | Zbl
[17] Llibre J., Salhi T., “On the dynamics of class of Kolmogorov systems”, J. Appl. Math. Comput., 225 (2013), 242–245 | DOI | MR | Zbl
[18] Llibre J., Valls C., “Polynomial, rational and analytic first integrals for a family of 3-dimensional Lotka-Volterra systems”, Z. Angew. Math. Phys., 62:5 (2011), 761–777 | DOI | MR | Zbl
[19] Llibre J., Yu J., Zhang X., “On the limit cycle of the polynomial differential systems with a linear node and Homogeneous nonlinearities”, Internat. J. Bifur. Chaos, 24:5, ser. Appl. Sci. Engrg. (2014), 1–7 | DOI | MR
[20] Llyod N.G., Pearson J.M., Saez E., Szanto I., “Limit cycles of a cubic Kolmogorov system”, Appl. Math. Lett., 9:1 (1996), 15–18 | DOI | MR
[21] May R.M., Stability and complexity in model ecosystems, Princeton, New Jersey, 1974, 304 pp.
[22] Singer M.F., “Liouvillian first integrals of differential equations”, Trans. Amer. Math. Soc., 333 (1990), 673–688 | DOI | MR
[23] Poincare H., “Sur lintegration des equations differentielles du premier ordre et du premier degre I and II”, Rendiconti del Circolo Matematico di Palermo, 5 (1891), 161–191 | DOI | Zbl