Perturbation of a waveguide by a narrow potential
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 274-284 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study a boundary value problem in a band with Fourier boundary condition. The problem models a waveguide perturbed by a narrow complex potential of large intensity. The potential depends on a small parameter and a large parameter. The small parameter corresponds to the diameter of the support of the potential, and the large parameter corresponds to the maximum value of the potential. The product of the parameters tends to zero. The problem corresponds to mathematical models of a quantum waveguide and an acoustic waveguide. In this statement, in contrast to the statements considered earlier, a weaker constraint is imposed on the ratio of the parameters and the Fourier conditions are given at the boundary of the band. The main content of this paper is the construction of a special transform that takes the original operator to an operator with a small localized perturbation; the transform preserves the spectrum of the operator. We obtain a condition on the potential under which an eigenvalue appears from the edge of the continuous spectrum; in this case, we find the leading terms of the asymptotics of the eigenvalue. We also obtain a condition for the absence of such an eigenvalue. The results are formulated in a theorem.
Mots-clés : perturbation
Keywords: waveguide, eigenvalue.
@article{TIMM_2017_23_2_a22,
     author = {I. Kh. Khusnullin},
     title = {Perturbation of a waveguide by a narrow potential},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {274--284},
     year = {2017},
     volume = {23},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a22/}
}
TY  - JOUR
AU  - I. Kh. Khusnullin
TI  - Perturbation of a waveguide by a narrow potential
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 274
EP  - 284
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a22/
LA  - ru
ID  - TIMM_2017_23_2_a22
ER  - 
%0 Journal Article
%A I. Kh. Khusnullin
%T Perturbation of a waveguide by a narrow potential
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 274-284
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a22/
%G ru
%F TIMM_2017_23_2_a22
I. Kh. Khusnullin. Perturbation of a waveguide by a narrow potential. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 274-284. http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a22/

[1] Exner P., Seba P., “Bound states in curved quantum waveguides”, J. Math. Phys., 30:11 (1989), 2574–2580 | DOI | MR | Zbl

[2] Exner P., “Bound states in quantum waveguides of a slowly decaying curvature”, J. Math. Phys., 34:1 (1993), 23–28 | DOI | MR | Zbl

[3] Duclos P., Exner P., “Curvature-induced bound states in quantum waveguides in two and three dimensions”, Rev. Math. Phys., 7:1 (1995), 73–102 | DOI | MR | Zbl

[4] Gadylshin R.R., “O lokalnykh vozmuscheniyakh kvantovykh volnovodov”, Teoret. i mat. fizika, 145:3 (2005), 358–371 | DOI | MR | Zbl

[5] Bikmetov A., Gadyl'shin R., “On quantum waveguide with shrinking potential”, Russian J. Math. Phys., 17:1 (2010), 19–25 | DOI | MR | Zbl

[6] Gadylshin R. R., Khusnullin I. Kh., “Operator Shredingera na osi s potentsialami, zavisyaschimi ot dvukh parametrov”, Algebra i analiz, 22:6 (2010), 50–66

[7] Gadylshin R. R., Khusnullin I. Kh., “Vozmuschenie periodicheskogo operatora uzkim potentsialom”, Teoret. i mat. fizika, 173:1 (2012), 127–134 | DOI | Zbl

[8] Gadylshin R.R., “O lokalnykh vozmuscheniyakh operatora Shredingera na osi”, Teoret. i mat. fizika, 132:1 (2002), 97–104 | DOI | MR | Zbl

[9] Borisov D.I., Gadylshin R.R., “O spektre periodicheskogo operatora s malym lokalizovannym vozmuscheniem”, Izv. RAN. Ser. matematicheskaya, 72:4 (2008), 37–66 | DOI | MR | Zbl

[10] Bikmetov A.R., Vildanova V.F., Khusnullin I. Kh., “O vozmuschenii operatora Shredingera na osi uzkimi potentsialami”, Ufim. mat. zhurn., 7:4 (2015), 25–33 | MR

[11] Borisov D.I., Sharapov T.R., Karimov R., “Otsenka nachalnykh masshtabov dlya volnovodov s nekotorymi sluchainymi singulyarnymi potentsialami”, Ufim. mat. zhurn., 7:2 (2015), 35–56

[12] Bikmetov A.R., Gadyl'shin R.R., “On local perturbations of waveguides”, Russian J. Math. Phys., 23:1 (2016), 1–19 | DOI | MR

[13] Glazman I.M., Pryamye metody spektralnogo kachestvennogo analiza singulyarnykh differentsialnykh operatorov, Fizmatlit, M., 1963, 339 pp. | MR

[14] Bikmetov A. R., Gadylshin R. R., “Vozmuschenie ellipticheskogo operatora uzkim potentsialom v n-mernoi oblasti”, Ufim. mat. zhurn., 4:2 (2012), 28–64 | MR