On the nontrivial solvability of one class of nonlinear integral equations of the Urysohn type
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 266-273
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper is devoted to the study and solution of one class of nonlinear integral equations of the Urysohn type on the positive half-line. Special cases of such equations are applied in various areas of mathematical physics. They appear, in particular, in kinetic gas theory, in radiative transfer theory, and in $p$-adic mathematical physics. It is assumed that the Hammerstein convolution operator with a power nonlinearity is a minorant in the Krasnoselskii sense for the Urysohn operator. We prove a theorem of existence of nonnegative nontrivial bounded solutions. In addition, we find the limit of the constructed solution at infinity. The monotonicity of the solution is established in a special case. The proof of the main theorem is of constructive nature. The proof is based on the construction of invariant conical segments for the corresponding nonlinear Urysohn operator. In the end of the paper, we give examples of equations of the described type that are of independent interest.
Keywords: Urysohn equation, Caratheodory condition, iteration, monotonicity, bounded solution.
Mots-clés : Volterra equation
@article{TIMM_2017_23_2_a21,
     author = {Kh. A. Khachatryan and H. S. Petrosyan and A. A. Sisakyan},
     title = {On the nontrivial solvability of one class of nonlinear integral equations of the {Urysohn} type},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {266--273},
     year = {2017},
     volume = {23},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a21/}
}
TY  - JOUR
AU  - Kh. A. Khachatryan
AU  - H. S. Petrosyan
AU  - A. A. Sisakyan
TI  - On the nontrivial solvability of one class of nonlinear integral equations of the Urysohn type
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 266
EP  - 273
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a21/
LA  - ru
ID  - TIMM_2017_23_2_a21
ER  - 
%0 Journal Article
%A Kh. A. Khachatryan
%A H. S. Petrosyan
%A A. A. Sisakyan
%T On the nontrivial solvability of one class of nonlinear integral equations of the Urysohn type
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 266-273
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a21/
%G ru
%F TIMM_2017_23_2_a21
Kh. A. Khachatryan; H. S. Petrosyan; A. A. Sisakyan. On the nontrivial solvability of one class of nonlinear integral equations of the Urysohn type. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 266-273. http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a21/

[1] Khachatryan A.Kh., Khachatryan Kh.A., “Kachestvennoe razlichie reshenii dlya statsionarnykh modelnykh uravnenii Boltsmana v lineinom i nelineinom sluchayakh”, Teoret. mat. fizika, 180:2 (2014), 272–288 | DOI | Zbl

[2] Vladimirov V.S., Volovich Ya.I., “O nelineinom uravnenii dinamiki v teorii $p$-adicheskoi struny”, Teoret. mat. fizika, 138:3 (2004), 355–368 | DOI | MR | Zbl

[3] Engibaryan N.B., “Ob odnoi zadache nelineinogo perenosa izlucheniya”, Astrofizika, 2:1 (1966), 31–36

[4] Uryson P.S., “Ob odnom tipe nelineinykh integralnykh uravnenii”, Mat. sb., 31:2 (1923), 236–255

[5] Krasnoselskii M.A., Polozhitelnye resheniya operatornykh uravnenii, Izd. fiz.-mat. lit., M., 1962, 394 pp. | MR

[6] Zabreiko P.P., Pustylnik E.I., “O nepreryvnosti i polnoi nepreryvnosti nelineinykh integralnykh operatorov v prostranstvakh $L_p$”, Uspekhi mat. nauk, 19:2 (1964), 204–505

[7] Brezis H., Browder F.E., “Existence theorems for nonlinear integral equations of Hammerstein type”, Bull. Amer. Math. Soc., 81:1 (1975), 73–78 | DOI | MR | Zbl

[8] Arabadzhyan L.G., “Resheniya odnogo integralnogo uravneniya tipa Gammershteina”, Izv. NAN Armenii. Matematika, 32:1 (1997), 21–28 | MR | Zbl

[9] Khachatryan A.Kh., Khachatryan Kh.A., “O postroenii neotritsatelnogo resheniya odnogo klassa nelineinykh integralnykh uravnenii tipa Urysona na poluosi”, Ukr. mat. zhurn., 63:4 (2011), 110–118 | MR | Zbl

[10] Khachatryan Kh.A., “Ob odnom klasse integralnykh uravnenii tipa Urysona s silnoi nelineinostyu”, Izvestiya RAN. Ser. Matematika, 76:1 (2012), 173–200 | DOI | MR | Zbl

[11] Khachatryan Kh.A., “O netrivialnykh resheniyakh odnogo klassa nelineinykh integralnykh uravnenii tipa svertki”, Materialy konferentsii “VI Rossiisko-Armyanskoe soveschanie po matematicheskomu analizu, matematicheskoi fizike i analiticheskoi mekhanike”, Rostov-na-Donu, 2016, 40–41 http://rus-arm.sfedu.ru/thethis.pdf

[12] Arabadzhyan L.G., Engibaryan N.B., “Uravneniya v svertkakh i nelineinye funktsionalnye uravneniya”, Itogi nauki i tekhniki. Mat. analiz, 22 (1984), 175–242 | MR

[13] Kolmogorov A.N., Fomin V.S., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981, 544 pp. | MR