@article{TIMM_2017_23_2_a20,
author = {O. Yu. Khachay},
title = {Asymptotics of a solution of a three-dimensional nonlinear wave equation near a butterfly catastrophe point},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {250--265},
year = {2017},
volume = {23},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a20/}
}
TY - JOUR AU - O. Yu. Khachay TI - Asymptotics of a solution of a three-dimensional nonlinear wave equation near a butterfly catastrophe point JO - Trudy Instituta matematiki i mehaniki PY - 2017 SP - 250 EP - 265 VL - 23 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a20/ LA - ru ID - TIMM_2017_23_2_a20 ER -
%0 Journal Article %A O. Yu. Khachay %T Asymptotics of a solution of a three-dimensional nonlinear wave equation near a butterfly catastrophe point %J Trudy Instituta matematiki i mehaniki %D 2017 %P 250-265 %V 23 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a20/ %G ru %F TIMM_2017_23_2_a20
O. Yu. Khachay. Asymptotics of a solution of a three-dimensional nonlinear wave equation near a butterfly catastrophe point. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 250-265. http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a20/
[1] Khachay O.Y., Nosov P.A., “On some numerical integration curves for PDE in neighborhood of “butterfly” catastrophe point”, Ural Math. J., 2:2 (2016), 127–140 https://umjuran.ru/index.php/umj/article/view/66 | DOI
[2] Vasileva A.B., Butuzov V.F., Nefedov N.N., “Kontrastnye struktury v singulyarno vozmuschennykh zadachakh”, Fundament. i prikl. matematika, 4:3 (1998), 799–851 | MR | Zbl
[3] Suleimanov B.I., “Katastrofa sborki v medlenno menyayuschikhsya polozheniyakh ravnovesiya”, Zhurn. eksperiment. i teor. fiziki, 122:5 (11) (2002), 1093–1106
[4] Ilin A.M., Suleimanov B.I., “O dvukh spetsialnykh funktsiyakh, svyazannykh s osobennostyu sborki”, Dokl. RAN, 387:2 (2002), 156–158 | MR | Zbl
[5] Ilin A.M., Suleimanov B.I., “Zarozhdenie kontrastnykh struktur tipa stupenki, svyazannoe s katastrofoi sborki”, Mat. sb., 195:12 (2004), 27–46 | DOI | Zbl
[6] Maslov V.P., Danilov V.G., Volosov K.A., Matematicheskoe modelirovanie protsessov teplomassoperenosa. Evolyutsiya dissipativnykh struktur, Nauka, M., 1987, 352 pp. | MR
[7] Ilin A.M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp. | MR
[8] Gilmor R., Prikladnaya teoriya katastrof, v. 1, Mir, M., 1984, 350 pp. | MR
[9] Vladimirov V.S., Zharinov V.V., Uravneniya matematicheskoi fiziki, Fizmatlit, M., 2004, 400 pp. | MR
[10] Zorich V.A., Matematicheskii analiz, Ch. I, 4-e, ispravlennoe izd., MTsNMO, M., 2002, 664 pp.
[11] Fehlberg E., Low-order classical Runge-Kutta formulas with stepsize control, NASA Technical. Report R-315, 1969, 43 pp.