Voir la notice du chapitre de livre
Mots-clés : integer partition
@article{TIMM_2017_23_2_a2,
author = {V. A. Baranskii and T. A. Senchonok},
title = {On threshold graphs and realizations of graphical partitions},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {22--31},
year = {2017},
volume = {23},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a2/}
}
V. A. Baranskii; T. A. Senchonok. On threshold graphs and realizations of graphical partitions. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 22-31. http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a2/
[1] Asanov M.O., Baranskii V.A., Rasin V.V., Diskretnaya matematika: grafy, matroidy, algoritmy, 2-e izd., ispr. i dop., Lan, SPb., 2010, 368 pp.
[2] Andrews G.E., The theory of partitions, Cambridge University Press, Cambridge, 1976, 255 pp. | MR
[3] Brylawski T., “The lattice of integer partitions”, Discrete Math., 6 (1973), 201–219 | DOI | MR | Zbl
[4] Baransky V.A., Senchonok T.A., “On maximal graphical partitions”, Sib. Elect. Math. Reports, 14 (2017), 112–124 | DOI | Zbl
[5] Baransky V.A., Koroleva T.A., “The lattice of partitions of a positive integer”, Doklady Math., 77:1 (2008), 72–75 | DOI | MR | Zbl
[6] Baranskii V.A., Koroleva T.A., Senchonok T.A., “O reshetke razbienii naturalnogo chisla”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:3 (2015), 30–36 | MR
[7] Baransky V.A., Koroleva T.A., Senchonok T.A., “On the partition lattice of all integers”, Sib. Elect. Math. Reports, 13 (2016), 744–753 | DOI | MR
[8] Baransky V.A., Nadymova T.I., Senchonok T.A., “A new algorithm generating graphical sequences”, Sib. Elect. Math. Reports, 13 (2016), 269–279 | DOI | MR | Zbl
[9] Mahadev N.V.R., Peled U.N., Threshold graphs and related topics, Annals of Discr. Math., 56, North-Holland Publishing Co., Amsterdam, 1995, 542 p pp. | MR