One approach to the comparison of error bounds at a point and on a set in the solution of ill-posed problems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 230-238 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The approximate solution of ill-posed problems by the regularization method always involves the issue of evaluating the error. It is a common practice to use uniform bounds on the whole class of well-posedness in terms of the modulus of continuity of the inverse operator on this class. Local error bounds, which are also called error bounds at a point, have been studied much less. Since the solution of a real-life ill-posed problem is unique, an error bound obtained on the whole class of well-posedness roughens to a great extent the true error bound. In the present paper we study the difference between error bounds on the class of well-posedness and error bounds at a point for a special class of ill-posed problems. Assuming that the exact solution is a piecewise smooth function, we prove that an error bound at a point is infinitely smaller than the exact bound on the class of well-posedness.
Keywords: ill-posed problem, regularization, evaluation of the error at a point, evaluation of the error on a set.
@article{TIMM_2017_23_2_a18,
     author = {V. P. Tanana},
     title = {One approach to the comparison of error bounds at a point and on a set in the solution of ill-posed problems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {230--238},
     year = {2017},
     volume = {23},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a18/}
}
TY  - JOUR
AU  - V. P. Tanana
TI  - One approach to the comparison of error bounds at a point and on a set in the solution of ill-posed problems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 230
EP  - 238
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a18/
LA  - ru
ID  - TIMM_2017_23_2_a18
ER  - 
%0 Journal Article
%A V. P. Tanana
%T One approach to the comparison of error bounds at a point and on a set in the solution of ill-posed problems
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 230-238
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a18/
%G ru
%F TIMM_2017_23_2_a18
V. P. Tanana. One approach to the comparison of error bounds at a point and on a set in the solution of ill-posed problems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 230-238. http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a18/

[1] Ivanov V.K., Vasin V.V., Tanana V.P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 206 pp. | MR

[2] Tanana V.P., “O novom podkhode k otsenke pogreshnosti metodov resheniya nekorrektno postavlennykh zadach”, Sib. zhurn. industr. matematiki, 5:4 (2002), 150–163 | MR | Zbl

[3] Tanana V.P., Bredikhina A.B., Kamaltdinova T.S., “Ob otsenke pogreshnosti priblizhennogo resheniya odnoi obratnoi zadachi v klasse kusochno-gladkikh funktsii”, Trudy In-ta matematiki i mekhaniki UrO RAN, 18:1 (2012), 281–288

[4] Tanana V.P., Yaparova N.M., “Ob optimalnom po poryadku metode resheniya uslovno-korrektnykh zadach”, Sib. zhurn. vychisl. matematiki, 9:4 (2006), 353–368 | MR | Zbl

[5] Tanana V.P., Rudakova T.N., “The optimum of the M.M. Lavrent'ev method”, Inverse Ill-Posed Problems, 18 (2011), 935-944 | DOI | MR

[6] Bredikhina A.B., “Nelineinyi metod proektsionnoi regulyarizatsii”, Vestn. YuURGU. Ser. Mat. modelirovanie i programmirovanie, 2011, no. 37(254), 4–10