On the approximate solution of an inverse boundary value problem by the method of finite-dimensional approximation of the regularized solution
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 210-219 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We solve the inverse boundary value problem for the heat equation. The problem is reduced to an integral equation of the first kind, which in turn is reduced to a finite-dimensional equation by means of discretization in two variables. The latter equation is solved by means of A.N.Tikhonov's regularization method with the regularization parameter chosen according to the residual principle with discretization error taken into account. It is shown that the problem does not satisfy V.K. Ivanov's condition, which would allow to employ the modulus of continuity of the inverse operator. That is why, to estimate the error of the approximate solution, we propose a numerical approach using the discretization of the problem. The obtained estimate is compared with the classical estimate in terms of the modulus of continuity. The approach proposed in this paper makes it possible to considerably extend the class of problems to which it is applicable.
Keywords: ill-posed problem, integral equation, estimation of error, regularizing algorithm, finite-dimensional approximation.
@article{TIMM_2017_23_2_a16,
     author = {A. I. Sidikova},
     title = {On the approximate solution of an inverse boundary value problem by the method of finite-dimensional approximation of the regularized solution},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {210--219},
     year = {2017},
     volume = {23},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a16/}
}
TY  - JOUR
AU  - A. I. Sidikova
TI  - On the approximate solution of an inverse boundary value problem by the method of finite-dimensional approximation of the regularized solution
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 210
EP  - 219
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a16/
LA  - ru
ID  - TIMM_2017_23_2_a16
ER  - 
%0 Journal Article
%A A. I. Sidikova
%T On the approximate solution of an inverse boundary value problem by the method of finite-dimensional approximation of the regularized solution
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 210-219
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a16/
%G ru
%F TIMM_2017_23_2_a16
A. I. Sidikova. On the approximate solution of an inverse boundary value problem by the method of finite-dimensional approximation of the regularized solution. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 210-219. http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a16/

[1] Tanana V.P., “Ob odnom optimalnom algoritme dlya operatornykh uravnenii pervogo roda s vozmuschennym operatorom”, Dokl. AN SSSR, 226:6 (1976), 1279–1282 | MR | Zbl

[2] Vasin V.V., “Diskretnaya skhodimost i konechnomernaya approksimatsiya regulyarizuyuschikh algoritmov”, Zhurn. vychisl. matematiki i mat. fiziki, 19:1 (1979), 11–21 | MR | Zbl

[3] Danilin A.R., “Ob optimalnykh po poryadku otsenkakh konechnomernykh approksimatsii reshenii nekorrektnykh zadach”, Zhurn. vychisl. matematiki i mat. fiziki, 25:8 (1985), 1123–1130 | MR | Zbl

[4] Ivanov V.K., Vasin V.V., Tanana V.P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 206 pp. | MR

[5] Tanana V.P., Sidikova A.I., “O garantirovannoi otsenke tochnosti priblizhennogo resheniya odnoi obratnoi zadachi teplovoi diagnostiki”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:2 (2010), 238–252

[6] Ivanov V.K., “O priblizhennom reshenii operatornykh uravnenii pervogo roda”, Zhurn. vychisl. matematiki i mat. fiziki, 6:6 (1966), 1089–1094

[7] Vasin V.V., “O svyazi nekotorykh variatsionnykh metodov priblizhennogo resheniya nekorrektnykh zadach”, Mat. zametki, 7:3 (1970), 265–272 | Zbl

[8] Morozov V.A., “O regulyarizatsii nekorrektno postavlennykh zadach i vybore parametra regulyarizatsii”, Zhurn. vychisl. matematiki i mat. fiziki, 6:1 (1966), 170–175 | MR

[9] Ivanov V.K., Korolyuk T.I., “Ob otsenke pogreshnosti pri reshenii lineinykh nekorrektno postavlennykh zadach”, Zhurn. vychisl. matematiki i mat. fiziki, 9:1 (1969), 30–41 | Zbl