On the problem of the flow of an ideal gas around bodies
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 200-209 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For Euler equations describing a steady motion of an ideal polytropic gas, we consider the problem of a flow around a body with known surface in the class of twice continuously differentiable functions. We use approaches of the geometric method developed by the authors. In the first part of the paper, the problem of a flow around a given body is solved in a special class of flows for which the continuity equation holds identically. We show that the class of solutions is nonempty and obtain one exact solution. In the second part of the paper we consider the general case of stationary flows of an ideal polytropic gas. The Euler equations are reduced to a system of ordinary differential equations, for which we obtain an exact solution for a given pressure on the body. Examples illustrating the properties of the obtained exact solutions are considered. It is shown that such solutions make it possible to find points of a smooth surface of a body where blowups or strong or weak discontinuities occur.
Mots-clés : Euler equations, exact solutions.
Keywords: polytropic gas, flow around bodies, stationary flows
@article{TIMM_2017_23_2_a15,
     author = {L. I. Rubina and O. N. Ul'yanov},
     title = {On the problem of the flow of an ideal gas around bodies},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {200--209},
     year = {2017},
     volume = {23},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a15/}
}
TY  - JOUR
AU  - L. I. Rubina
AU  - O. N. Ul'yanov
TI  - On the problem of the flow of an ideal gas around bodies
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 200
EP  - 209
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a15/
LA  - ru
ID  - TIMM_2017_23_2_a15
ER  - 
%0 Journal Article
%A L. I. Rubina
%A O. N. Ul'yanov
%T On the problem of the flow of an ideal gas around bodies
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 200-209
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a15/
%G ru
%F TIMM_2017_23_2_a15
L. I. Rubina; O. N. Ul'yanov. On the problem of the flow of an ideal gas around bodies. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 200-209. http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a15/

[1] Lifshits Yu.B., “Ob obtekanii tel vrascheniya zvukovym potokom idealnogo gaza”, Uchenye zapiski TsAGI, 4:6 (1973), 1–7

[2] Kraiko A.N., Pyankov K.S., Yakovlev E.A., “Obtekanie klina sverkhzvukovym potokom idealnogo gaza so “slabymi” i “silnymi” skachkami”, Prikl. matematika i mekhanika, 78:4 (2014), 451–470 | MR

[3] Lutskii A.G., Menshov I.S., Khankhasaeva Ya.V., “Ispolzovanie metoda svobodnoi granitsy dlya resheniya zadach obtekaniya dvizhuschikhsya tel”, Preprinty IPM im. M.V.Keldysha, 2014, 93, 1–16

[4] S.K. Godunov, A.V. Zabrodin, M.Ya. Ivanov, A.N. Kraiko, G.P. Prokopov, Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400 pp. | MR

[5] Galdi G.P., “On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications”, Handbook of Mathematical Fluid Dynamics, v. I, Amsterdam, 2002, 653–791 | DOI | MR | Zbl

[6] Rubina L.I., “Raschet obtekaniya osesimmetrichnykh tel metodom krupnykh chastits s ispolzovaniem optimalnykh krivolineinykh setok”, Modelirovanie v mekhanike, 3(20):6 (1989), 136–140 | Zbl

[7] Rudenko O.V., Soluyan S.I., Teoreticheskie osnovy nelineinoi akustiki, Nauka, M., 1975, 288 pp. | MR

[8] Rubina L.I., Ulyanov O.N., “O reshenii nekotorykh uravnenii nelineinoi akustiki”, Akusticheskii zhurn., 61:5 (2015), 576–582 | DOI

[9] Rubina L.I., Ulyanov O.N., “On some method for solving a nonlinear heat equation”, Sib. Math. J., 53:5 (2012), 872–881 | DOI | MR | Zbl

[10] Sidorov A.F., “Analiticheskie metody matematicheskoi fiziki i matematicheskii eksperiment”, sb. st., Chislo i mysl, no. 10, Znanie, M., 1987, 75–100