On the asymptotics of a solution to a second-order elliptic equation with a small parameter and a piecewise smooth boundary function
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 182-195
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the asymptotic behavior of a solution to the first boundary value problem for a second-order elliptic equation in the case when the small parameter is a factor at only one of the highest derivatives and the limit equation is an ordinary differential equation. We consider the case when the boundary function is piecewise smooth. Moreover, the point where the smoothness is violated is a point of jump discontinuity and coincides with the point where a characteristic of the limit equation touches the boundary from inside. Although the limit equation has the same order as the original equation, the problem under consideration is bisingular. We investigate the asymptotic behavior of the solution to this problem using the method of matched asymptotic expansions.
Keywords: singular problems, boundary value problems for partial differential equations, asymptotic expansions, matching method.
@article{TIMM_2017_23_2_a13,
     author = {E. F. Lelikova},
     title = {On the asymptotics of a solution to a second-order elliptic equation with a small parameter and a piecewise smooth boundary function},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {182--195},
     year = {2017},
     volume = {23},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a13/}
}
TY  - JOUR
AU  - E. F. Lelikova
TI  - On the asymptotics of a solution to a second-order elliptic equation with a small parameter and a piecewise smooth boundary function
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 182
EP  - 195
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a13/
LA  - ru
ID  - TIMM_2017_23_2_a13
ER  - 
%0 Journal Article
%A E. F. Lelikova
%T On the asymptotics of a solution to a second-order elliptic equation with a small parameter and a piecewise smooth boundary function
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 182-195
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a13/
%G ru
%F TIMM_2017_23_2_a13
E. F. Lelikova. On the asymptotics of a solution to a second-order elliptic equation with a small parameter and a piecewise smooth boundary function. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 182-195. http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a13/

[1] Vishik M.I., Lyusternik L.A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi mat. nauk, 12:5 (1957), 3–122 | Zbl

[2] Trenogin V.A., “Razvitie i prilozhenie asimptoticheskogo metoda Lyusternika–Vishika”, Uspekhi mat. nauk, 25:4(154) (1970), 123–156 | MR | Zbl

[3] Naife A., Metod vozmuschenii, Mir, M., 1976, 455 pp. | MR

[4] Van-Daik M., Metody vozmuschenii v mekhanike zhidkosti, Mir \publadddr M., 1967, 310 pp.

[5] Ilin A.M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka \publadddr M., 1989, 336 pp. | MR

[6] Lelikova E.F., “Ob asimptotike resheniya ellipticheskogo uravneniya vtorogo poryadka s malym parametrom pri odnoi iz starshikh proizvodnykh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 9:1 (2003), 107–119

[7] Lelikova E.F., “Ob asimptotike resheniya uravneniya s malym parametrom v oblasti s uglovymi tochkami”, Mat. sb., 201:10 (2010), 93–108 | DOI | MR | Zbl

[8] Lelikova E.F., “Ob asimptotike resheniya ellipticheskogo uravneniya vtorogo poryadka s malym parametrom pri odnoi iz starshikh proizvodnykh.”, Tr. Mosk. mat. ob-va, 71, 2010, 162–199 | MR | Zbl

[9] Lelikova E.F., “Ob asimptotike resheniya uravneniya s malym parametrom v okrestnosti tochki peregiba granitsy”, Dokl. RAN, 447:2 (2012), 136–139 | MR | Zbl

[10] Kondratev V.A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami.”, Tr. Mosk. mat. ob-va, 16, 1967, 209–292 | Zbl

[11] Lelikova E.F., “Ob asimptotike resheniya uravneniya s malym parametrom v okrestnosti tochki peregiba granitsy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 22:1 (2016), 197–211 | MR