@article{TIMM_2017_23_2_a12,
author = {V. A. Kyrov and G. G. Mikhailichenko},
title = {An analytic method for the embedding of the {Euclidean} and {pseudo-Euclidean} geometries},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {167--181},
year = {2017},
volume = {23},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a12/}
}
TY - JOUR AU - V. A. Kyrov AU - G. G. Mikhailichenko TI - An analytic method for the embedding of the Euclidean and pseudo-Euclidean geometries JO - Trudy Instituta matematiki i mehaniki PY - 2017 SP - 167 EP - 181 VL - 23 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a12/ LA - ru ID - TIMM_2017_23_2_a12 ER -
%0 Journal Article %A V. A. Kyrov %A G. G. Mikhailichenko %T An analytic method for the embedding of the Euclidean and pseudo-Euclidean geometries %J Trudy Instituta matematiki i mehaniki %D 2017 %P 167-181 %V 23 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a12/ %G ru %F TIMM_2017_23_2_a12
V. A. Kyrov; G. G. Mikhailichenko. An analytic method for the embedding of the Euclidean and pseudo-Euclidean geometries. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 167-181. http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a12/
[1] Mikhailichenko G.G., “O gruppovoi i fenomenologicheskoi simmetriyakh v geometrii”, Sib. mat. zhurn., 25:5 (1984), 99–113 | MR | Zbl
[2] Mikhailichenko G.G., Polimetricheskie geometrii, Novosib. gos. un-t, Novosibirsk, 2001, 144 pp.
[3] Mikhailichenko G.G., “Dvumernye geometrii”, Dokl. AN SSSR, 260:4 (1981), 803–805 | MR
[4] Lev V.Kh., “Trekhmernye geometrii v teorii fizicheskikh struktur”, Vychislitelnye sistemy, 125, IM SOAN SSSR, 1988, 90–103
[5] Kyrov V.A., “Funktsionalnye uravneniya v psevdoevklidovoi geometrii”, Sib. zhurn. industr. matematiki, 13:4 (2010), 38–51 | MR | Zbl
[6] Kyrov V.A., “Funktsionalnye uravneniya v simplekticheskoi geometrii”, Tr. Instituta matematiki i mekhaniki UrO RAN, 16:2 (2010), 149–153
[7] Kyrov V.A., “Vlozhenie fenomenologicheski simmetrichnykh geometrii dvukh mnozhestv ranga $(N,2)$ v fenomenologicheski simmetrichnye geometrii dvukh mnozhestv ranga $(N+1,2)$”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 26:3 (2016), 312–323 | DOI | MR | Zbl
[8] Ovsyannikov L.V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978, 344 pp. | MR
[9] Fikhtengolts G.M., Kurs differentsialnogo i integralnogo ischisleniya, v 2 t., v. 2, Fizmatgiz, M., 1963, 656 pp.
[10] Dyakov V., Maple 10/11/12/13/14 v matematicheskikh raschetakh, DMK PRESS, M., 2014, 800 pp.
[11] Elsgolts E.L., Differentsialnye uravneniya i variatsionnoe ischislenie, Nauka, M., 1969, 424 pp.
[12] Kyrov V.A., Shestimernye algebry Li grupp dvizhenii trekhmernykh fenomenologicheski simmetrichnykh geometrii, Prilozhenie k knige G.G. Mikhailichenko “Polimetricheskie geometrii”, Novosib. gos. un-t, Novosibirsk, 2001, 144 pp.