An analytic method for the embedding of the Euclidean and pseudo-Euclidean geometries
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 167-181 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is known that an $n$-dimensional geometry of maximum mobility admits a group of motions of dimension $n(n+1)/2$. Many of these geometries are well-known, for example, the Euclidean and pseudo-Euclidean geometries. Such geometries are phenomenologically symmetric; i.e., their metric properties are equivalent to their group properties. In this paper we consider the examples of the two-dimensional Euclidean and pseudo-Euclidean geometries to develop an analytical method for their embedding. More exactly, we search for all possible functions of the form $f=f((x_i-x_j)^2\pm(y_i-y_j)^2,z_i,z_j)$, where, for example, $x_i, y_i, z_i$ are the coordinates of a point $i$. It turns out that there exist only the following embeddings: $f=(x_i-x_j)^2\pm(y_i-y_j)^2+(z_i-z_j)^2$ and $f=[(x_i-x_j)^2\pm(y_i-y_j)^2]\exp(2z_i+2z_j)$. Note that we obtain not only the well-known three-dimensional geometries (Euclidean and pseudo-Euclidean) but also less known geometries (three-dimensional special extensions of the two-dimensional Euclidean and pseudo-Euclidean geometries). It is found that all these geometries admit six-dimensional groups of motions. To solve the formulated problem, according to the condition of local invariance of the metric function, we write the functional equation $$2[(x_i-x_j)(X_1(i)-X_1(j))+\epsilon(y_i-y_j)(X_2(i)-X_2(j))]\frac{\partial f}{\partial\theta}+X_3(i)\frac{\partial f}{\partial z_i}+X_3(j)\frac{\partial f}{\partial z_j}=0,$$ where all the components are analytic functions. This equation is expanded in a Taylor series and the coefficients of the expansion at identical products of powers of the variables are compared. This task is greatly simplified by using the Maple 15 computing environment. The obtained results are used to write differential equations, which are then integrated to find solutions to the embedding problem formulated earlier.
Keywords: Euclidean geometry, functional equation, differential equation, metric function.
@article{TIMM_2017_23_2_a12,
     author = {V. A. Kyrov and G. G. Mikhailichenko},
     title = {An analytic method for the embedding of the {Euclidean} and {pseudo-Euclidean} geometries},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {167--181},
     year = {2017},
     volume = {23},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a12/}
}
TY  - JOUR
AU  - V. A. Kyrov
AU  - G. G. Mikhailichenko
TI  - An analytic method for the embedding of the Euclidean and pseudo-Euclidean geometries
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 167
EP  - 181
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a12/
LA  - ru
ID  - TIMM_2017_23_2_a12
ER  - 
%0 Journal Article
%A V. A. Kyrov
%A G. G. Mikhailichenko
%T An analytic method for the embedding of the Euclidean and pseudo-Euclidean geometries
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 167-181
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a12/
%G ru
%F TIMM_2017_23_2_a12
V. A. Kyrov; G. G. Mikhailichenko. An analytic method for the embedding of the Euclidean and pseudo-Euclidean geometries. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 167-181. http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a12/

[1] Mikhailichenko G.G., “O gruppovoi i fenomenologicheskoi simmetriyakh v geometrii”, Sib. mat. zhurn., 25:5 (1984), 99–113 | MR | Zbl

[2] Mikhailichenko G.G., Polimetricheskie geometrii, Novosib. gos. un-t, Novosibirsk, 2001, 144 pp.

[3] Mikhailichenko G.G., “Dvumernye geometrii”, Dokl. AN SSSR, 260:4 (1981), 803–805 | MR

[4] Lev V.Kh., “Trekhmernye geometrii v teorii fizicheskikh struktur”, Vychislitelnye sistemy, 125, IM SOAN SSSR, 1988, 90–103

[5] Kyrov V.A., “Funktsionalnye uravneniya v psevdoevklidovoi geometrii”, Sib. zhurn. industr. matematiki, 13:4 (2010), 38–51 | MR | Zbl

[6] Kyrov V.A., “Funktsionalnye uravneniya v simplekticheskoi geometrii”, Tr. Instituta matematiki i mekhaniki UrO RAN, 16:2 (2010), 149–153

[7] Kyrov V.A., “Vlozhenie fenomenologicheski simmetrichnykh geometrii dvukh mnozhestv ranga $(N,2)$ v fenomenologicheski simmetrichnye geometrii dvukh mnozhestv ranga $(N+1,2)$”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 26:3 (2016), 312–323 | DOI | MR | Zbl

[8] Ovsyannikov L.V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978, 344 pp. | MR

[9] Fikhtengolts G.M., Kurs differentsialnogo i integralnogo ischisleniya, v 2 t., v. 2, Fizmatgiz, M., 1963, 656 pp.

[10] Dyakov V., Maple 10/11/12/13/14 v matematicheskikh raschetakh, DMK PRESS, M., 2014, 800 pp.

[11] Elsgolts E.L., Differentsialnye uravneniya i variatsionnoe ischislenie, Nauka, M., 1969, 424 pp.

[12] Kyrov V.A., Shestimernye algebry Li grupp dvizhenii trekhmernykh fenomenologicheski simmetrichnykh geometrii, Prilozhenie k knige G.G. Mikhailichenko “Polimetricheskie geometrii”, Novosib. gos. un-t, Novosibirsk, 2001, 144 pp.