On the polyhedral method of solving problems of control strategy synthesis in discrete-time systems with uncertainties and state constraints
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 151-166
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider control synthesis problems for linear and bilinear discrete-time systems under uncertainties and state constraints. Two types of problems are studied: when controls are additive and when they appear in the system matrix. For both problems we consider cases without uncertainty and cases with uncertainty, including additive parallelotope-bounded uncertainties and interval uncertainties in the matrix of the system. We continue to develop the methods of “polyhedral” control synthesis with the use of polyhedral (parallelotope-valued) solvability tubes. Namely, the technique proposed by the author earlier for solving the first problem is expanded for the case of matrix uncertainties. Further, for both problems, a uniform solution scheme is developed, which makes it possible to construct control strategies by explicit formulas. Descriptions of the polyhedral solvability tubes in the form of systems of nonlinear recurrence relations are given. Control strategies, which can be constructed using these polyhedral solvability tubes, are described. For the first problem, both techniques produce the same polyhedral solvability tubes, but the control strategies turn out to be different; an interrelation between the controls of both types is indicated. Results of computer simulations are presented.
Keywords: control synthesis, uncertainties, state constraints, solvability tubes
Mots-clés : parallelotopes.
@article{TIMM_2017_23_2_a11,
     author = {E. K. Kostousova},
     title = {On the polyhedral method of solving problems of control strategy synthesis in discrete-time systems with uncertainties and state constraints},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {151--166},
     year = {2017},
     volume = {23},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a11/}
}
TY  - JOUR
AU  - E. K. Kostousova
TI  - On the polyhedral method of solving problems of control strategy synthesis in discrete-time systems with uncertainties and state constraints
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 151
EP  - 166
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a11/
LA  - ru
ID  - TIMM_2017_23_2_a11
ER  - 
%0 Journal Article
%A E. K. Kostousova
%T On the polyhedral method of solving problems of control strategy synthesis in discrete-time systems with uncertainties and state constraints
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 151-166
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a11/
%G ru
%F TIMM_2017_23_2_a11
E. K. Kostousova. On the polyhedral method of solving problems of control strategy synthesis in discrete-time systems with uncertainties and state constraints. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 151-166. http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a11/

[1] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[2] Kurzhanski A.B., Valyi I., Ellipsoidal calculus for estimation and control, Birkhauser, Boston, 1997, 321 pp. | MR | Zbl

[3] Kurzhanski A.B., Varaiya P., Dynamics and control of trajectory tubes: theory and computation, Birkhauser, Basel, 2014, 445 pp. | DOI | MR | Zbl

[4] Gusev M.I., “Application of penalty function method to computation of reachable sets for control systems with state constraints”, AIP Conf. Proc., 1773 (2016), 050003-1–050003-9 | DOI

[5] Tarasev A.M., Uspenskii A.A., Ushakov V.N., “Approksimatsionnye skhemy i konechnoraznostnye operatory dlya postroeniya obobschennykh reshenii uravnenii Gamiltona–Yakobi”, Izv. RAN. Tekhnicheskaya kibernetika, 1994, no. 3, 173–185 | Zbl

[6] Kumkov S.I., Patsko V.S., Pyatko S.G., Fedotov A.A., “Postroenie mnozhestva razreshimosti v zadache provodki samoleta pri vetrovom vozmuschenii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 11:1 (2005), 149–159

[7] Chernousko F.L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem. Metod ellipsoidov, Nauka, M., 1988, 319 pp. | MR

[8] Filippova T.F., “Estimates of reachable sets of impulsive control problems with special nonlinearity”, AIP Conf. Proc., 1773 (2016), 100004-1–100004-10 | DOI

[9] Kostousova E.K., “Control synthesis via parallelotopes: optimization and parallel computations”, Optimiz. Methods Software, 14:4 (2001), 267–310 | DOI | MR | Zbl

[10] Jaulin L., “Inner and outer set-membership state estimation”, Reliable Computing, 22 (2016), 47–55 | MR

[11] Kostousova E.K., “O poliedralnykh otsenkakh v zadachakh sinteza strategii upravleniya v lineinykh mnogoshagovykh sistemakh”, Algoritmy i programmnye sredstva parallelnykh vychislenii, sb.nauch.tr., v. 9, Izd-vo UrO RAN, Ekaterinburg, 2006, 84–105 | MR

[12] Kostousova E.K., “O poliedralnom metode resheniya zadach sinteza strategii upravleniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 20:4 (2014), 153–167

[13] Kostousova E.K., “On target control synthesis under set-membership uncertainties using polyhedral techniques”, IFIP Advances in Information and Communication Technology (IFIP AICT), 443 (2014), 170–180 | DOI | MR | Zbl

[14] Kostousova E.K., “O vnutrennikh poliedralnykh otsenkakh mnozhestv dostizhimosti lineinykh sistem s fazovymi ogranicheniyami”, Algoritmy i programmnye sredstva parallelnykh vychislenii, sb.nauch.tr., v. 5, UrO RAN, Ekaterinburg, 2001, 167–187

[15] Vazhentsev A.Yu., “O vnutrennikh ellipsoidalnykh approksimatsiyakh dlya zadach sinteza upravleniya pri ogranichennykh koordinatakh”, Izv. RAN. Teoriya i sistemy upravleniya, 2000, no. 3, 70–77 | MR

[16] Kurzhanskiy A.A., Varaiya P., “Reach set computation and control synthesis for discrete-time dynamical systems with disturbances”, Automatica, 47:7 (2011), 1414–1426 | DOI | MR | Zbl

[17] Barmish B.R., Sankaran J., “The propagation of parametric uncertainty via polytopes”, IEEE Trans. Automat. Control, AC-24:2 (1979), 346–349 | DOI | MR | Zbl

[18] Lisin D.V., Filippova T.F., “Ob otsenivanii traektornykh trubok differentsialnykh vklyuchenii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 6:1–2 (2000), 435–445

[19] Schneider R.G., Convex bodies: the Brunn-Minkowski theory, Cambridge Univ. Press, Cambridge, 1993, 490 pp. | DOI | MR | Zbl

[20] Vasin V.V., Eremin I.I., Operatory i iteratsionnye protsessy feierovskogo tipa. Teoriya i prilozheniya, UrO RAN, Ekaterinburg, 2005, 210 pp. | MR