Voir la notice du chapitre de livre
Keywords: integral functional, unilateral pointwise functional constraints, minimizer, minimum value, strong connectedness.
@article{TIMM_2017_23_2_a10,
author = {A. A. Kovalevsky},
title = {Variational problems with unilateral pointwise functional constraints in variable domains},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {133--150},
year = {2017},
volume = {23},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a10/}
}
TY - JOUR AU - A. A. Kovalevsky TI - Variational problems with unilateral pointwise functional constraints in variable domains JO - Trudy Instituta matematiki i mehaniki PY - 2017 SP - 133 EP - 150 VL - 23 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a10/ LA - ru ID - TIMM_2017_23_2_a10 ER -
A. A. Kovalevsky. Variational problems with unilateral pointwise functional constraints in variable domains. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 133-150. http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a10/
[1] Kovalevsky A.A., “On the convergence of solutions to bilateral problems with the zero lower constraint and an arbitrary upper constraint in variable domains”, Nonlinear Anal., 147 (2016), 63–79 | DOI | MR | Zbl
[2] Khruslov E.Ya., “Asimptoticheskoe povedenie reshenii vtoroi kraevoi zadachi pri izmelchenii granitsy oblasti”, Mat. sb., 106:4 (1978), 604–621 | MR | Zbl
[3] Zhikov V.V., “Voprosy skhodimosti, dvoistvennosti i usredneniya dlya funktsionalov variatsionnogo ischisleniya”, Izv. AN SSSR. Ser. matematicheskaya, 47:5 (1983), 961–998 | MR | Zbl
[4] Dal Maso G., An introduction to $\Gamma$-convergence, Birkhauser, Boston, 1993, 352 pp. | DOI | MR | Zbl
[5] Kovalevskii A.A., “O neobkhodimykh i dostatochnykh usloviyakh $\Gamma$-skhodimosti integralnykh funktsionalov s razlichnymi oblastyami opredeleniya”, Nelinein. granichn. zadachi, 1992, no. 4, 29–39
[6] Kovalevskii A.A., “O $\Gamma$-skhodimosti integralnykh funktsionalov, opredelennykh na slabo svyazannykh sobolevskikh prostranstvakh”, Ukr. mat. zhurn., 48:5 (1996), 614–628 | MR
[7] Pankratov L., “$\Gamma$-convergence of nonlinear functionals in thin reticulated structures”, C. R. Math. Acad. Sci. Paris, 335:3 (2002), 315–320 | DOI | MR | Zbl
[8] Amaziane B., Goncharenko M., Pankratov L., “$\Gamma_D$-convergence for a class of quasilinear elliptic equations in thin structures”, Math. Methods Appl. Sci., 28:15 (2005), 1847–1865 | DOI | MR | Zbl
[9] Kovalevsky A.A., Rudakova O.A., “Variational problems with pointwise constraints and degeneration in variable domains”, Differ. Equ. Appl., 1:4 (2009), 517–559 | DOI | MR | Zbl
[10] Dal Maso G., “Limits of minimum problems for general integral functionals with unilateral obstacles”, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 74 (1983), 55–61 | MR | Zbl
[11] Boccardo L., Murat F., “Homogenization of nonlinear unilateral problems”, Composite Media and Homogenization Theory, Progr. Nonlinear Differential Equations Appl., 5, Birkhauser, Boston, 1991, 81–105 | DOI | MR
[12] Sandrakov G.V., “Osrednenie variatsionnykh neravenstv i uravnenii, opredelennykh psevdomonotonnym operatorom”, Mat. sb., 199:1 (2008), 67–100 | DOI | MR | Zbl
[13] Kovalevskii A.A., “O nekotorykh voprosakh, svyazannykh s problemoi usredneniya variatsionnykh zadach dlya funktsionalov s peremennoi oblastyu opredeleniya”, Sovremennyi analiz i ego prilozheniya, Naukova dumka, Kiev, 1989, 62–70
[14] Kovalevskii A.A., “$G$-skhodimost i usrednenie nelineinykh ellipticheskikh operatorov divergentnogo vida s peremennoi oblastyu opredeleniya”, Izv. RAN. Ser. matematicheskaya, 58:3 (1994), 3–35 | MR
[15] Vainberg M.M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972, 416 pp. | MR