Variational problems with unilateral pointwise functional constraints in variable domains
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 133-150
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a sequence of convex integral functionals $F_s\colon W^{1,p}(\Omega_s)\to\mathbb R$ and a sequence of weakly lower semicontinuous and, in general, non-integral functionals $G_s\colon W^{1,p}(\Omega_s)\to\mathbb R$, where $\{\Omega_s\}$ is a sequence of domains of $\mathbb R^n$ contained in a bounded domain $\Omega\subset\mathbb R^n$ ($n\geqslant 2$) and $p>1$. Along with this, we consider a sequence of closed convex sets $V_s=\{v\in W^{1,p}(\Omega_s)\colon v\geqslant K_s(v)\text{ a.e. in }\Omega_s\}$, where $K_s$ is a mapping of the space $W^{1,p}(\Omega_s)$ into the set of all functions defined on $\Omega_s$. We establish conditions under which minimizers and minimum values of the functionals $F_s+G_s$ on the sets $V_s$ converge to a minimizer and the minimum value, respectively, of a certain functional on the set $V=\{v\in W^{1,p}(\Omega)\colon v\geqslant K(v)\text{ a.e. in }\Omega\}$, where $K$ is a mapping of the space $W^{1,p}(\Omega)$ into the set of all functions defined on $\Omega$. These conditions include, in particular, the strong connectedness of the spaces $W^{1,p}(\Omega_s)$ with the space $W^{1,p}(\Omega)$, the exhaustion condition of the domain $\Omega$ by the domains $\Omega_s$, the $\Gamma$-convergence of the sequence $\{F_s\}$ to a functional $F\colon W^{1,p}(\Omega)\to\mathbb R$, and a certain convergence of the sequence $\{G_s\}$ to a functional $G\colon W^{1,p}(\Omega)\to\mathbb R$. We also assume certain conditions that characterize both the internal properties of the mappings $K_s$ and their relation to the mapping $K$. In particular, these conditions admit the study of variational problems with unilateral varying irregular obstacles and with varying constraints combining the pointwise dependence and the functional dependence of the integral form.
Mots-clés : variable domains, $\Gamma$-convergence
Keywords: integral functional, unilateral pointwise functional constraints, minimizer, minimum value, strong connectedness.
@article{TIMM_2017_23_2_a10,
     author = {A. A. Kovalevsky},
     title = {Variational problems with unilateral pointwise functional constraints in variable domains},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {133--150},
     year = {2017},
     volume = {23},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a10/}
}
TY  - JOUR
AU  - A. A. Kovalevsky
TI  - Variational problems with unilateral pointwise functional constraints in variable domains
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 133
EP  - 150
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a10/
LA  - ru
ID  - TIMM_2017_23_2_a10
ER  - 
%0 Journal Article
%A A. A. Kovalevsky
%T Variational problems with unilateral pointwise functional constraints in variable domains
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 133-150
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a10/
%G ru
%F TIMM_2017_23_2_a10
A. A. Kovalevsky. Variational problems with unilateral pointwise functional constraints in variable domains. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 133-150. http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a10/

[1] Kovalevsky A.A., “On the convergence of solutions to bilateral problems with the zero lower constraint and an arbitrary upper constraint in variable domains”, Nonlinear Anal., 147 (2016), 63–79 | DOI | MR | Zbl

[2] Khruslov E.Ya., “Asimptoticheskoe povedenie reshenii vtoroi kraevoi zadachi pri izmelchenii granitsy oblasti”, Mat. sb., 106:4 (1978), 604–621 | MR | Zbl

[3] Zhikov V.V., “Voprosy skhodimosti, dvoistvennosti i usredneniya dlya funktsionalov variatsionnogo ischisleniya”, Izv. AN SSSR. Ser. matematicheskaya, 47:5 (1983), 961–998 | MR | Zbl

[4] Dal Maso G., An introduction to $\Gamma$-convergence, Birkhauser, Boston, 1993, 352 pp. | DOI | MR | Zbl

[5] Kovalevskii A.A., “O neobkhodimykh i dostatochnykh usloviyakh $\Gamma$-skhodimosti integralnykh funktsionalov s razlichnymi oblastyami opredeleniya”, Nelinein. granichn. zadachi, 1992, no. 4, 29–39

[6] Kovalevskii A.A., “O $\Gamma$-skhodimosti integralnykh funktsionalov, opredelennykh na slabo svyazannykh sobolevskikh prostranstvakh”, Ukr. mat. zhurn., 48:5 (1996), 614–628 | MR

[7] Pankratov L., “$\Gamma$-convergence of nonlinear functionals in thin reticulated structures”, C. R. Math. Acad. Sci. Paris, 335:3 (2002), 315–320 | DOI | MR | Zbl

[8] Amaziane B., Goncharenko M., Pankratov L., “$\Gamma_D$-convergence for a class of quasilinear elliptic equations in thin structures”, Math. Methods Appl. Sci., 28:15 (2005), 1847–1865 | DOI | MR | Zbl

[9] Kovalevsky A.A., Rudakova O.A., “Variational problems with pointwise constraints and degeneration in variable domains”, Differ. Equ. Appl., 1:4 (2009), 517–559 | DOI | MR | Zbl

[10] Dal Maso G., “Limits of minimum problems for general integral functionals with unilateral obstacles”, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 74 (1983), 55–61 | MR | Zbl

[11] Boccardo L., Murat F., “Homogenization of nonlinear unilateral problems”, Composite Media and Homogenization Theory, Progr. Nonlinear Differential Equations Appl., 5, Birkhauser, Boston, 1991, 81–105 | DOI | MR

[12] Sandrakov G.V., “Osrednenie variatsionnykh neravenstv i uravnenii, opredelennykh psevdomonotonnym operatorom”, Mat. sb., 199:1 (2008), 67–100 | DOI | MR | Zbl

[13] Kovalevskii A.A., “O nekotorykh voprosakh, svyazannykh s problemoi usredneniya variatsionnykh zadach dlya funktsionalov s peremennoi oblastyu opredeleniya”, Sovremennyi analiz i ego prilozheniya, Naukova dumka, Kiev, 1989, 62–70

[14] Kovalevskii A.A., “$G$-skhodimost i usrednenie nelineinykh ellipticheskikh operatorov divergentnogo vida s peremennoi oblastyu opredeleniya”, Izv. RAN. Ser. matematicheskaya, 58:3 (1994), 3–35 | MR

[15] Vainberg M.M., Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972, 416 pp. | MR