High accuracy algorithms for approximation of discontinuity lines of a noisy function
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 10-21
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the problem of localizing (finding the position of) discontinuity lines of a noisy function of two variables. Such problems arise in image processing, because the boundaries of objects are often discontinuity lines. It is assumed that the function of two variables is smooth in a neighborhood of discontinuity lines and has discontinuity of the first kind at each point of these lines. Instead of the exact function, its approximation in the space $L_2$ and the measurement error level$\delta$ are known. In this case, the problem belongs to the class of nonlinear ill-posed problems, and regularization algorithms should be constructed for its solution. We construct and study regularizing discrete algorithms of averaging “with a turn”. New rules are proposed for choosing regularization parameters and the methods of deriving localization error bounds are improved. Error bounds are found for the localization of singularities of order $O(\delta^{4/3})$ under stricter separability conditions: the separability threshold in the present paper has order $O(\delta^{2/3})$, whereas in the authors' previous papers devoted to this problem the bounds for the localization error and separability threshold have order $O(\delta)$. In addition, the discretization of the algorithms of averaging “with a turn” is investigated theoretically for the first time (conditions on the discretization step are specified).
Keywords: ill-posed problem, regularization algorithm, localization of singularities, discontinuity of the first kind, discontinuity line.
@article{TIMM_2017_23_2_a1,
     author = {A. L. Ageev and T. V. Antonova},
     title = {High accuracy algorithms for approximation of discontinuity lines of a noisy function},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {10--21},
     year = {2017},
     volume = {23},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a1/}
}
TY  - JOUR
AU  - A. L. Ageev
AU  - T. V. Antonova
TI  - High accuracy algorithms for approximation of discontinuity lines of a noisy function
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 10
EP  - 21
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a1/
LA  - ru
ID  - TIMM_2017_23_2_a1
ER  - 
%0 Journal Article
%A A. L. Ageev
%A T. V. Antonova
%T High accuracy algorithms for approximation of discontinuity lines of a noisy function
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 10-21
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a1/
%G ru
%F TIMM_2017_23_2_a1
A. L. Ageev; T. V. Antonova. High accuracy algorithms for approximation of discontinuity lines of a noisy function. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 23 (2017) no. 2, pp. 10-21. http://geodesic.mathdoc.fr/item/TIMM_2017_23_2_a1/

[1] Malla S., Veivlety v obrabotke signalov, Mir, M., 2005, 671 pp.

[2] Vvedenie v konturnyi analiz i ego prilozheniya k obrabotke izobrazhenii i signalov, eds. pod red. Ya.A. Furmana, Fizmatlit, M., 2002, 596 pp.

[3] Ivanov V.K., Vasin V.V., Tanana V.P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 206 pp. | MR

[4] Vasin V.V., Ageev A.L., Ill-posed problems with a priori information, VSP, Utrecht, 1995, 255 pp. | MR | Zbl

[5] Antonova T.V., “Metod lokalizatsii linii razryva priblizhenno zadannoi funktsii dvukh peremennykh”, Sib. zhurn. vychisl. matematiki, 15:4 (2012), 345–357 | Zbl

[6] Ageev A.L., Antonova T.V., “Approksimatsiya linii razryva zashumlennoi funktsii dvukh peremennykh”, Sib. zhurn. industr. matematiki, 15:1(49) (2012), 3–13 | MR | Zbl

[7] Ageev A.L., Antonova T.V., “Metody approksimatsii linii razryva zashumlennoi funktsii dvukh peremennykh so schetnym chislom osobennostei”, Sib. zhurn. industr. matematiki, 18:2(62) (2015), 3–11 | DOI | Zbl

[8] Ageev A.L., Antonova T.V., “O nekorrektno postavlennykh zadachakh lokalizatsii osobennostei”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:3 (2011), 30–45

[9] Ageev A.L., Antonova T.V., “New methods for the localization of discontinuities of the first kind for functions of bounded variation”, J. Inverse Ill-Posed Probl., 21:2 (2013), 177–191 | DOI | MR | Zbl

[10] Kurlikovskii D.V., Ageev A.L., Antonova T.V., “Issledovanie porogovogo (korrelyatsionnogo) metoda i ego prilozhenie k lokalizatsii osobennostei”, Sib. elektron. mat. izvestiya, 13 (2016), 829–848 | DOI | MR