A two-stage method of construction of regularizing algorithms for nonlinear ill-posed problems
Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 57-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For an equation with a nonlinear differentiable operator acting in a Hilbert space, we study a two-stage method of construction of a regularizing algorithm. First, we use Lavrientiev's regularization scheme. Then, we apply to the regularized equation either Newton's method or nonlinear analogs of $\alpha$-processes: the minimum error method, the minimum residual method, and the steepest descent method. For these processes we establish the linear convergence rate and the Fejer property of iterations. Two cases are considered: when the operator of the problem is monotone and when the operator is finite-dimensional and its derivative has nonnegative spectrum. For the two-stage method with a monotone operator, we give an error bound, which has optimal order on the class of sourcewise representable solutions. In the second case, the error of the method is estimated by means of the residual. The proposed methods and their modified analogs are implemented numerically for three-dimensional inverse problems of gravimetry and magnetometry. The results of the numerical experiment are discussed.
Keywords: Lavrentiev regularization scheme, Newton's method, nonlinear $\alpha$-processes, two-stage algorithm, inverse gravimetry and magnetometry problems.
@article{TIMM_2017_23_1_a8,
     author = {V. V. Vasin and A. F. Skurydina},
     title = {A two-stage method of construction of regularizing algorithms for nonlinear ill-posed problems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {57--74},
     year = {2017},
     volume = {23},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a8/}
}
TY  - JOUR
AU  - V. V. Vasin
AU  - A. F. Skurydina
TI  - A two-stage method of construction of regularizing algorithms for nonlinear ill-posed problems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 57
EP  - 74
VL  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a8/
LA  - ru
ID  - TIMM_2017_23_1_a8
ER  - 
%0 Journal Article
%A V. V. Vasin
%A A. F. Skurydina
%T A two-stage method of construction of regularizing algorithms for nonlinear ill-posed problems
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 57-74
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a8/
%G ru
%F TIMM_2017_23_1_a8
V. V. Vasin; A. F. Skurydina. A two-stage method of construction of regularizing algorithms for nonlinear ill-posed problems. Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 57-74. http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a8/

[1] Bakushinskii A.B., “Regulyarizuyuschii algoritm na osnove metoda Nyutona–Kantorovicha dlya resheniya variatsionnykh neravenstv”, Zhurn. vychislit. matematiki i mat. fiziki, 16:6 (1976), 1397–1604 | MR

[2] Bakushinsky A., Goncharsky A., Ill-posed problems: Theory and applications, Math. and Its Appl., 301, Kluwer Acad. Publ., Berlin; Boston; London, 1994, 258 pp. | DOI | MR

[3] Vasin V.V., Akimova E.N., Miniakhmetova A.F., “Iteratsionnye algoritmy nyutonovskogo tipa i ikh prilozheniya k obratnoi zadache gravimetrii”, Vestn. Yuzhno-Ural. gos. un-ta, 6:3 (2013), 26–37 | MR | Zbl

[4] Vasin V.V., “Modified Newton type processes generating Fejer approximations of regularized solutions to nonlinear equations”, Proc. Steklov Inst. Math., 284, no. Suppl. 1, 2014, S145–S158 | DOI | MR | Zbl

[5] Vasin V.V., “Regularized modified $\alpha$-processes for nonlinear equations with monotone operators”, Dokl. Math., 94:1 (2016), 361–364 | DOI | Zbl

[6] Kufner A., Fuchik S., Nelineinye differentsialnye uravneniya, Nauka, M., 1988, 308 pp.

[7] Vasin V.V., Eremin I.I., Operators and iterative processes of Fejer Type. Theory and application, Inverse and Ill-Posed Problems Series, 53, Walter de Gruyter, Berlin; New York, 2009, 155 pp. | DOI | MR

[8] Streng G., Lineinaya algebra i ee primeneniya, Mir, M., 1980, 454 pp. | MR

[9] Tautenhahn U., “On the method of Lavrentiev regularization for nonlinear ill-posed problems”, Inverse Problems, 18:1 (2002), 191–207 | DOI | MR | Zbl

[10] Vasin V.V., “Modified steepest descent method for nonlinear irregular operator equation”, Dokl. Math., 91:3 (2015), 300–303 | DOI | MR | Zbl

[11] Ivanov V.K., “Ob otsenke ustoichivosti kvazireshenii na nekompaktnykh mnozhestvakh”, Izvestiya vuzov. Matematika, 1974, no. 5 (144), 97–103 | Zbl

[12] Ivanov V.K., Vasin V.V., Tanana V.P., Theory of linear Ill-posed problems and its applications, Inverse and Ill-Posed Problems, 36, VSP, Utrecht, 2002, 296 pp. | MR

[13] E.N. Akimova, V.E. Misilov, A.F. Skurydina, A.I. Tretyakov, “Gradientnye metody resheniya strukturnykh obratnykh zadach gravimetrii i magnitometrii na superkompyutere ‘`Uran"’”, Vychislitelnye metody i programmirovanie, 16:1 (2015), 155–164

[14] Akimova E.N., Misilov V.E, Dergachev E.A., “Algoritmy resheniya strukturnoi obratnoi zadachi magnitometrii”, Tr. 41-i sessii Mezhdunar. seminara im. D.G. Uspenskogo, IGF UrO RAN, Ekaterinburg, 2014, 4–6