@article{TIMM_2017_23_1_a8,
author = {V. V. Vasin and A. F. Skurydina},
title = {A two-stage method of construction of regularizing algorithms for nonlinear ill-posed problems},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {57--74},
year = {2017},
volume = {23},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a8/}
}
TY - JOUR AU - V. V. Vasin AU - A. F. Skurydina TI - A two-stage method of construction of regularizing algorithms for nonlinear ill-posed problems JO - Trudy Instituta matematiki i mehaniki PY - 2017 SP - 57 EP - 74 VL - 23 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a8/ LA - ru ID - TIMM_2017_23_1_a8 ER -
%0 Journal Article %A V. V. Vasin %A A. F. Skurydina %T A two-stage method of construction of regularizing algorithms for nonlinear ill-posed problems %J Trudy Instituta matematiki i mehaniki %D 2017 %P 57-74 %V 23 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a8/ %G ru %F TIMM_2017_23_1_a8
V. V. Vasin; A. F. Skurydina. A two-stage method of construction of regularizing algorithms for nonlinear ill-posed problems. Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 57-74. http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a8/
[1] Bakushinskii A.B., “Regulyarizuyuschii algoritm na osnove metoda Nyutona–Kantorovicha dlya resheniya variatsionnykh neravenstv”, Zhurn. vychislit. matematiki i mat. fiziki, 16:6 (1976), 1397–1604 | MR
[2] Bakushinsky A., Goncharsky A., Ill-posed problems: Theory and applications, Math. and Its Appl., 301, Kluwer Acad. Publ., Berlin; Boston; London, 1994, 258 pp. | DOI | MR
[3] Vasin V.V., Akimova E.N., Miniakhmetova A.F., “Iteratsionnye algoritmy nyutonovskogo tipa i ikh prilozheniya k obratnoi zadache gravimetrii”, Vestn. Yuzhno-Ural. gos. un-ta, 6:3 (2013), 26–37 | MR | Zbl
[4] Vasin V.V., “Modified Newton type processes generating Fejer approximations of regularized solutions to nonlinear equations”, Proc. Steklov Inst. Math., 284, no. Suppl. 1, 2014, S145–S158 | DOI | MR | Zbl
[5] Vasin V.V., “Regularized modified $\alpha$-processes for nonlinear equations with monotone operators”, Dokl. Math., 94:1 (2016), 361–364 | DOI | Zbl
[6] Kufner A., Fuchik S., Nelineinye differentsialnye uravneniya, Nauka, M., 1988, 308 pp.
[7] Vasin V.V., Eremin I.I., Operators and iterative processes of Fejer Type. Theory and application, Inverse and Ill-Posed Problems Series, 53, Walter de Gruyter, Berlin; New York, 2009, 155 pp. | DOI | MR
[8] Streng G., Lineinaya algebra i ee primeneniya, Mir, M., 1980, 454 pp. | MR
[9] Tautenhahn U., “On the method of Lavrentiev regularization for nonlinear ill-posed problems”, Inverse Problems, 18:1 (2002), 191–207 | DOI | MR | Zbl
[10] Vasin V.V., “Modified steepest descent method for nonlinear irregular operator equation”, Dokl. Math., 91:3 (2015), 300–303 | DOI | MR | Zbl
[11] Ivanov V.K., “Ob otsenke ustoichivosti kvazireshenii na nekompaktnykh mnozhestvakh”, Izvestiya vuzov. Matematika, 1974, no. 5 (144), 97–103 | Zbl
[12] Ivanov V.K., Vasin V.V., Tanana V.P., Theory of linear Ill-posed problems and its applications, Inverse and Ill-Posed Problems, 36, VSP, Utrecht, 2002, 296 pp. | MR
[13] E.N. Akimova, V.E. Misilov, A.F. Skurydina, A.I. Tretyakov, “Gradientnye metody resheniya strukturnykh obratnykh zadach gravimetrii i magnitometrii na superkompyutere ‘`Uran"’”, Vychislitelnye metody i programmirovanie, 16:1 (2015), 155–164
[14] Akimova E.N., Misilov V.E, Dergachev E.A., “Algoritmy resheniya strukturnoi obratnoi zadachi magnitometrii”, Tr. 41-i sessii Mezhdunar. seminara im. D.G. Uspenskogo, IGF UrO RAN, Ekaterinburg, 2014, 4–6