@article{TIMM_2017_23_1_a7,
author = {A. L. Bagno and A. M. Tarasyev},
title = {Stability properties of the value function in an infinite horizon optimal control problem},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {43--56},
year = {2017},
volume = {23},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a7/}
}
TY - JOUR AU - A. L. Bagno AU - A. M. Tarasyev TI - Stability properties of the value function in an infinite horizon optimal control problem JO - Trudy Instituta matematiki i mehaniki PY - 2017 SP - 43 EP - 56 VL - 23 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a7/ LA - ru ID - TIMM_2017_23_1_a7 ER -
A. L. Bagno; A. M. Tarasyev. Stability properties of the value function in an infinite horizon optimal control problem. Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 43-56. http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a7/
[1] Capuzzo Dolcetta I.C., Ishii H., “Approximate solution of the Bellman equation of deterministic control theory”, Appl. Math. Optimiz., 11:2 (1984), 161–181 | DOI | MR
[2] Ramsey F.P., “A mathematical theory of saving”, The Economic Journal, 1928, December, 543–559 | DOI
[3] Solow R.M., “Technical change and the aggregate production function”, The Review of Economics and Statistics, 39:3 (1957), 312–320 | DOI | MR
[4] Adiatulina R.A., Tarasev A.M., “Differentsialnaya igra neogranichennoi prodolzhitelnosti”, Prikl. matematika i mekhanika, 51:4 (1987), 531–537 | MR | Zbl
[5] Aseev S.M., Kryazhimskii A.V., “Printsip maksimuma Pontryagina i zadachi optimalnogo rosta”, Tr. MIAN, 257, 2007, 3–271
[6] Bagno A.L., Tarasev A.M., “Svoistva funktsii tseny v zadachakh optimalnogo upravleniya s beskonechnym gorizontom”, Vest. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 26:1 (2016), 3–14 | DOI | MR
[7] Intriligator M., Matematicheskie metody optimizatsii i ekonomicheskaya teoriya, per. s angl. G.I. Zhukovoi, F.Ya. Kelmana, Airis-press, M., 2002, 576 pp.
[8] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 280 pp. | MR
[9] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR
[10] Krushvits L., Finansirovanie i investitsii, per. s nem., eds. V.V. Kovalev, Z.A. Sabov, Piter, SPb., 2000, 381 pp.
[11] N.N. Subbotina, E.A. Kolpakova, T.B. Tokmantsev, L.G. Shagalova, Metod kharakteristik dlya uravnenii Gamiltona–Yakobi–Bellmana, UrO RAN, Ekaterinburg, 2013, 244 pp.
[12] Nikolskii M.S., “O lokalnoi lipshitsevosti funktsii Bellmana v odnoi optimizatsionnoi zadache”, Tr. In-ta matematiki i mekhaniki UrO RAN, 10:2 (2004), 106–115 | Zbl
[13] Subbotin A.I., Minimaksnye neravenstva i uravneniya Gamiltona-Yakobi, Nauka, M., 1991, 216 pp. | MR
[14] Sultanova R.A., Minimaksnye resheniya uravnenii v chastnykh proizvodnykh, dis. ... kand. fiz.-matem. nauk, Ural. gos. un-t im. A.M. Gorkogo, Ekaterinburg, 1995, 192 pp.
[15] Tarasev A.M., Ushakov V.N., Uspenskii A.A., “Approksimatsionnye skhemy i konechno-raznostnye operatory dlya postroeniya obobschennykh reshenii uravnenii Gamiltona–Yakobi”, Izv. RAN. Tekhnicheskaya kibernetika, 1994, no. 3, 173–185 | Zbl