Stability properties of the value function in an infinite horizon optimal control problem
Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 43-56 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Properties of the value function are examined in an infinite horizon optimal control problem with an integrand index appearing in the quality functional with a discount factor. The properties are analyzed in the case when the payoff functional of the control system includes aquality index represented by an unbounded function. An upper estimate is given for the growth rate of the value function. Necessary and sufficient conditions are obtained to ensure that the value function satisfies the infinitesimal stability properties. The question of coincidence of the value function with the generalized minimax solution of the Hamilton-Jacobi-Bellman-Isaacs equation is discussed. The uniqueness of the corresponding minimax solution is shown. The growth asymptotic behavior of the value function is described for the logarithmic, power, and exponential quality functionals, which arise in economic and financial modeling. The obtained results can be used toconstruct grid approximation methods for the value function as the generalized minimax solution of the Hamilton-Jacobi-Bellman-Isaacs equation. These methods are effective tools in the modeling of economic growth processes.
Keywords: optimal control, Hamilton-Jacobi equation, minimax solution, infinite horizon, value function, stability properties.
@article{TIMM_2017_23_1_a7,
     author = {A. L. Bagno and A. M. Tarasyev},
     title = {Stability properties of the value function in an infinite horizon optimal control problem},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {43--56},
     year = {2017},
     volume = {23},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a7/}
}
TY  - JOUR
AU  - A. L. Bagno
AU  - A. M. Tarasyev
TI  - Stability properties of the value function in an infinite horizon optimal control problem
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 43
EP  - 56
VL  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a7/
LA  - ru
ID  - TIMM_2017_23_1_a7
ER  - 
%0 Journal Article
%A A. L. Bagno
%A A. M. Tarasyev
%T Stability properties of the value function in an infinite horizon optimal control problem
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 43-56
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a7/
%G ru
%F TIMM_2017_23_1_a7
A. L. Bagno; A. M. Tarasyev. Stability properties of the value function in an infinite horizon optimal control problem. Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 43-56. http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a7/

[1] Capuzzo Dolcetta I.C., Ishii H., “Approximate solution of the Bellman equation of deterministic control theory”, Appl. Math. Optimiz., 11:2 (1984), 161–181 | DOI | MR

[2] Ramsey F.P., “A mathematical theory of saving”, The Economic Journal, 1928, December, 543–559 | DOI

[3] Solow R.M., “Technical change and the aggregate production function”, The Review of Economics and Statistics, 39:3 (1957), 312–320 | DOI | MR

[4] Adiatulina R.A., Tarasev A.M., “Differentsialnaya igra neogranichennoi prodolzhitelnosti”, Prikl. matematika i mekhanika, 51:4 (1987), 531–537 | MR | Zbl

[5] Aseev S.M., Kryazhimskii A.V., “Printsip maksimuma Pontryagina i zadachi optimalnogo rosta”, Tr. MIAN, 257, 2007, 3–271

[6] Bagno A.L., Tarasev A.M., “Svoistva funktsii tseny v zadachakh optimalnogo upravleniya s beskonechnym gorizontom”, Vest. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 26:1 (2016), 3–14 | DOI | MR

[7] Intriligator M., Matematicheskie metody optimizatsii i ekonomicheskaya teoriya, per. s angl. G.I. Zhukovoi, F.Ya. Kelmana, Airis-press, M., 2002, 576 pp.

[8] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 280 pp. | MR

[9] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[10] Krushvits L., Finansirovanie i investitsii, per. s nem., eds. V.V. Kovalev, Z.A. Sabov, Piter, SPb., 2000, 381 pp.

[11] N.N. Subbotina, E.A. Kolpakova, T.B. Tokmantsev, L.G. Shagalova, Metod kharakteristik dlya uravnenii Gamiltona–Yakobi–Bellmana, UrO RAN, Ekaterinburg, 2013, 244 pp.

[12] Nikolskii M.S., “O lokalnoi lipshitsevosti funktsii Bellmana v odnoi optimizatsionnoi zadache”, Tr. In-ta matematiki i mekhaniki UrO RAN, 10:2 (2004), 106–115 | Zbl

[13] Subbotin A.I., Minimaksnye neravenstva i uravneniya Gamiltona-Yakobi, Nauka, M., 1991, 216 pp. | MR

[14] Sultanova R.A., Minimaksnye resheniya uravnenii v chastnykh proizvodnykh, dis. ... kand. fiz.-matem. nauk, Ural. gos. un-t im. A.M. Gorkogo, Ekaterinburg, 1995, 192 pp.

[15] Tarasev A.M., Ushakov V.N., Uspenskii A.A., “Approksimatsionnye skhemy i konechno-raznostnye operatory dlya postroeniya obobschennykh reshenii uravnenii Gamiltona–Yakobi”, Izv. RAN. Tekhnicheskaya kibernetika, 1994, no. 3, 173–185 | Zbl