Optimization of dynamics of a control system in the presence of risk factors
Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 27-42 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is concerned with the problem of optimization of dynamics of a control system in the situation when there is a set $M$ ("risk zone") in the state space $\mathbb{R}^n$ which is unfavorable due to reasons of safety or instability of the system. In the classical setting the presence of such unfavorable set $M$ is modeled usually via introducing an additional state constraint in the problem that means the ban on the presence of the trajectories in the risk zone $M$. Necessary optimality conditions in the form of Clarke's Hamiltonian inclusion are developed for the corresponding optimal control problem in the case when the system's dynamics is described by an autonomous differential inclusion and the risk zone $M$ is an open set. The main novelty of the result is that it is proved in the most important case when the risk zone $M$ is an open set. There is a natural relation of the problem under consideration to the classical optimal control problem with state constraints in this case. The result obtained involves an additional nonstandard stationarity condition for the Hamiltonian.
Keywords: risk zone, state constraints, optimal control, differential inclusion, Hamiltonian inclusion, Pontryagin maximum principle.
@article{TIMM_2017_23_1_a6,
     author = {S. M. Aseev},
     title = {Optimization of dynamics of a control system in the presence of risk factors},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {27--42},
     year = {2017},
     volume = {23},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a6/}
}
TY  - JOUR
AU  - S. M. Aseev
TI  - Optimization of dynamics of a control system in the presence of risk factors
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 27
EP  - 42
VL  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a6/
LA  - ru
ID  - TIMM_2017_23_1_a6
ER  - 
%0 Journal Article
%A S. M. Aseev
%T Optimization of dynamics of a control system in the presence of risk factors
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 27-42
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a6/
%G ru
%F TIMM_2017_23_1_a6
S. M. Aseev. Optimization of dynamics of a control system in the presence of risk factors. Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 27-42. http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a6/

[1] Arutyunov A.V., “Vozmuscheniya ekstremalnykh zadach s ogranicheniyami i neobkhodimye usloviya optimalnosti”, Matematicheskii analiz. Itogi nauki i tekhniki, 27, VINITI, M., 1989, 147–235

[2] Arutyunov A.V., Usloviya ekstremuma. Anormalnye i vyrozhdennye zadachi, Faktorial, M., 1997, 254 pp.

[3] Arutyunov A.V., Aseev S.M., “Printsip maksimuma v zadachakh optimalnogo upravleniya s fazovymi ogranicheniyami. Nevyrozhdennost i ustoichivost”, Dokl. RAN, 334:2 (1994), 134–137 | Zbl

[4] Arutyunov A.V., Tynyanskii N.T., “O printsipe maksimuma v zadache s fazovymi ogranicheniyami”, Izv. AN SSSR. Ser. Tekhn. kibernetika, 1984, no. 4, 60–68 | Zbl

[5] Aseev S.M., Smirnov A.I., “Printsip maksimuma Pontryagina dlya zadachi optimalnogo prokhozhdeniya cherez zadannuyu oblast”, Dokl. RAN, 395:5 (2004), 583–585 | MR | Zbl

[6] Aseev S.M., Smirnov A.I., “Neobkhodimye usloviya optimalnosti pervogo poryadka dlya zadachi optimalnogo prokhozhdeniya cherez zadannuyu oblast”, Nelineinaya dinamika i upravlenie, sb. st., v. 4, Fizmatlit, M., 2004, 179–204

[7] Dubovitskii A.Ya., Dubovitskii V.A., “Neobkhodimye usloviya silnogo minimuma v zadachakh optimalnogo upravleniya s vyrozhdeniem kontsevykh i fazovykh ogranichenii”, Uspekhi mat. nauk, 40:2 (1985), 175–176 | MR

[8] Dubovitskii A.Ya., Dubovitskii V.A., “Printsip maksimuma v regulyarnykh zadachakh optimalnogo upravleniya, u kotorykh kontsy fazovoi traektorii lezhat na granitse fazovogo ogranicheniya”, Avtomatika i telemekhanika, 1987, no. 12, 25–33 | MR

[9] Dubovitskii A.Ya., Dubovitskii V.A., “Kriterii suschestvovaniya soderzhatelnogo printsipa maksimuma v zadache s fazovymi ogranicheniyami”, Differents. uravneniya, 31:10 (1995), 1611–1616 | MR

[10] Dubovitskii A.Ya., Milyutin A.A., “Zadachi na ekstremum pri nalichii ogranichenii”, Zhurn. vychisl. matematiki i mat. fiziki, 5:3 (1965), 395–453 | MR

[11] Ioffe A.D., Tikhomirov V.M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 481 pp.

[12] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 280 pp. | MR

[13] Mordukhovich B.Sh., “Printsip makismuma v zadachakh optimalnogo bystrodeistviya s negladkimi ogranicheniyami”, Prikl. matematika i mekhanika, 40:6 (1976), 1014–1023 | MR | Zbl

[14] Mordukhovich B.Sh., Metody approksimatsii v zadachakh optimizatsii i upravleniya, Nauka, M., 1988, 360 pp. | MR

[15] Natanson I.P., Teoriya funktsii veschestvennoi peremennoi, 3-e izd., Nauka, M., 1974, 480 pp. | MR

[16] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp.

[17] Pshenichnyi B.N., Ochilov S., “O zadache optimalnogo prokhozhdeniya cherez zadannuyu oblast”, Kibernetika i vychisl. tekhnika, 99 (1993), 3–8 | MR

[18] Pshenichnyi B.N., Ochilov S., “Ob odnoi spetsialnoi zadache optimalnogo bystrodeistviya”, Kibernetika i vychisl. tekhnika, 101 (1994), 11–15

[19] Smirnov A.I., “Neobkhodimye usloviya optimalnosti dlya odnogo klassa zadach optimalnogo upravleniya s razryvnym integrantom”, Tr. MIAN, 262, 2008, 222–239 | Zbl

[20] Filippov A.F., “O nekotorykh voprosakh teorii optimalnogo regulirovaniya”, Vestn. Moskovsk. un-ta, no. 2, 25–32 | MR | Zbl

[21] Arutyunov A.V., Aseev S.M., “Investigation of the degeneracy phenomenon of the maximum principle for optimal control problems with state constraints”, SIAM J. Control Optim., 35:3 (1997), 930–952 | DOI | MR | Zbl

[22] Aseev S.M., “Methods of regularization in nonsmooth problems of dynamic optimization”, J. Math. Sci., 94:3 (1999), 1366–1393 | DOI | MR | Zbl

[23] Ermoliev Yu., Norkin V., Risk and extended utility functions: optimization approaches, IIASA Interim Report: IIASA IR-03-033, Laxenburg, 2003, 25 pp.

[24] Cesari L., Optimization - theory and applications. Problems with ordinary differential equations, Appl. Math., 17, Springer-Verlag, New York, 1983, 542 pp. | MR | Zbl

[25] Fontes F.A.C.C., Frankowska H., “Normality and nondegeneracy for optimal control problems with state constraints”, J. Optim. Theory Appl., 166:1 (2015), 115–136 | DOI | MR | Zbl

[26] Hartl R.F., Sethi S.P., Vickson R.G., “A survey of the maximum principles for optimal control problems with state constraints”, SIAM Review, 37:2 (1995), 181–218 | DOI | MR | Zbl