@article{TIMM_2017_23_1_a6,
author = {S. M. Aseev},
title = {Optimization of dynamics of a control system in the presence of risk factors},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {27--42},
year = {2017},
volume = {23},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a6/}
}
S. M. Aseev. Optimization of dynamics of a control system in the presence of risk factors. Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 27-42. http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a6/
[1] Arutyunov A.V., “Vozmuscheniya ekstremalnykh zadach s ogranicheniyami i neobkhodimye usloviya optimalnosti”, Matematicheskii analiz. Itogi nauki i tekhniki, 27, VINITI, M., 1989, 147–235
[2] Arutyunov A.V., Usloviya ekstremuma. Anormalnye i vyrozhdennye zadachi, Faktorial, M., 1997, 254 pp.
[3] Arutyunov A.V., Aseev S.M., “Printsip maksimuma v zadachakh optimalnogo upravleniya s fazovymi ogranicheniyami. Nevyrozhdennost i ustoichivost”, Dokl. RAN, 334:2 (1994), 134–137 | Zbl
[4] Arutyunov A.V., Tynyanskii N.T., “O printsipe maksimuma v zadache s fazovymi ogranicheniyami”, Izv. AN SSSR. Ser. Tekhn. kibernetika, 1984, no. 4, 60–68 | Zbl
[5] Aseev S.M., Smirnov A.I., “Printsip maksimuma Pontryagina dlya zadachi optimalnogo prokhozhdeniya cherez zadannuyu oblast”, Dokl. RAN, 395:5 (2004), 583–585 | MR | Zbl
[6] Aseev S.M., Smirnov A.I., “Neobkhodimye usloviya optimalnosti pervogo poryadka dlya zadachi optimalnogo prokhozhdeniya cherez zadannuyu oblast”, Nelineinaya dinamika i upravlenie, sb. st., v. 4, Fizmatlit, M., 2004, 179–204
[7] Dubovitskii A.Ya., Dubovitskii V.A., “Neobkhodimye usloviya silnogo minimuma v zadachakh optimalnogo upravleniya s vyrozhdeniem kontsevykh i fazovykh ogranichenii”, Uspekhi mat. nauk, 40:2 (1985), 175–176 | MR
[8] Dubovitskii A.Ya., Dubovitskii V.A., “Printsip maksimuma v regulyarnykh zadachakh optimalnogo upravleniya, u kotorykh kontsy fazovoi traektorii lezhat na granitse fazovogo ogranicheniya”, Avtomatika i telemekhanika, 1987, no. 12, 25–33 | MR
[9] Dubovitskii A.Ya., Dubovitskii V.A., “Kriterii suschestvovaniya soderzhatelnogo printsipa maksimuma v zadache s fazovymi ogranicheniyami”, Differents. uravneniya, 31:10 (1995), 1611–1616 | MR
[10] Dubovitskii A.Ya., Milyutin A.A., “Zadachi na ekstremum pri nalichii ogranichenii”, Zhurn. vychisl. matematiki i mat. fiziki, 5:3 (1965), 395–453 | MR
[11] Ioffe A.D., Tikhomirov V.M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 481 pp.
[12] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 280 pp. | MR
[13] Mordukhovich B.Sh., “Printsip makismuma v zadachakh optimalnogo bystrodeistviya s negladkimi ogranicheniyami”, Prikl. matematika i mekhanika, 40:6 (1976), 1014–1023 | MR | Zbl
[14] Mordukhovich B.Sh., Metody approksimatsii v zadachakh optimizatsii i upravleniya, Nauka, M., 1988, 360 pp. | MR
[15] Natanson I.P., Teoriya funktsii veschestvennoi peremennoi, 3-e izd., Nauka, M., 1974, 480 pp. | MR
[16] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 391 pp.
[17] Pshenichnyi B.N., Ochilov S., “O zadache optimalnogo prokhozhdeniya cherez zadannuyu oblast”, Kibernetika i vychisl. tekhnika, 99 (1993), 3–8 | MR
[18] Pshenichnyi B.N., Ochilov S., “Ob odnoi spetsialnoi zadache optimalnogo bystrodeistviya”, Kibernetika i vychisl. tekhnika, 101 (1994), 11–15
[19] Smirnov A.I., “Neobkhodimye usloviya optimalnosti dlya odnogo klassa zadach optimalnogo upravleniya s razryvnym integrantom”, Tr. MIAN, 262, 2008, 222–239 | Zbl
[20] Filippov A.F., “O nekotorykh voprosakh teorii optimalnogo regulirovaniya”, Vestn. Moskovsk. un-ta, no. 2, 25–32 | MR | Zbl
[21] Arutyunov A.V., Aseev S.M., “Investigation of the degeneracy phenomenon of the maximum principle for optimal control problems with state constraints”, SIAM J. Control Optim., 35:3 (1997), 930–952 | DOI | MR | Zbl
[22] Aseev S.M., “Methods of regularization in nonsmooth problems of dynamic optimization”, J. Math. Sci., 94:3 (1999), 1366–1393 | DOI | MR | Zbl
[23] Ermoliev Yu., Norkin V., Risk and extended utility functions: optimization approaches, IIASA Interim Report: IIASA IR-03-033, Laxenburg, 2003, 25 pp.
[24] Cesari L., Optimization - theory and applications. Problems with ordinary differential equations, Appl. Math., 17, Springer-Verlag, New York, 1983, 542 pp. | MR | Zbl
[25] Fontes F.A.C.C., Frankowska H., “Normality and nondegeneracy for optimal control problems with state constraints”, J. Optim. Theory Appl., 166:1 (2015), 115–136 | DOI | MR | Zbl
[26] Hartl R.F., Sethi S.P., Vickson R.G., “A survey of the maximum principles for optimal control problems with state constraints”, SIAM Review, 37:2 (1995), 181–218 | DOI | MR | Zbl