A discrete model of the heat exchange process in rotating regenerative air preheaters
Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 12-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We propose a mathematical model of the heat transfer process in a rotating regenerative air preheater of a thermal power plant. The model is obtained by discretizing the process as a result of averaging both temporal and spatial variables. Making a number of simplifying assumptions, we write a linear discrete system $z(n+1)=Az(n)+r(n)$ of order $2m$ with a monomial $2m\times2m$ matrix $A=(a_{ij})$ in which $a_{ij}=\alpha_i$ for $i=1$, $j=2m$ and for $i=2,\ldots, 2m$, $j=i-1$, whereas all the other elements are zero. Using the relation $A^{2m}=\left(\prod_{i = 1}^{2m}{\alpha _{i}}\right)E$ and the Cauchy formula, we study the stability, periodicity, and convergence of the Cesaro means and other properties. We also consider the identification problem consisting in finding unknown coefficients $\alpha_i$, $i=1,2,\ldots, 2m,$ from the values $z(1), z(2), \ldots, z(2m)$ of the trajectory. Under the assumption $r(n)=r=const$ for $n=1,2,\ldots, 2m$, we transform the problem to the matrix equation $AY=B$, where the square matrix $Y$ is composed of the columns $y_1=t=r-(E-A)z_0$, $y_2=Ay_1+t$, $\ldots$, $y_{2m}=Ay_{2m-1}+t$ and $B=[t-y_2, t-y_3, \ldots, t-y_{2m-1}]$. A recurrent relation is derived for $\det Y$. It is proved that, if $\Delta=\alpha_1\alpha_2\ldots\alpha_m-\alpha_{m+1}\alpha{m+2}\ldots \alpha_{2m}\neq 0$, then $\det Y\neq0$ and $A=BY^{-1}$.
Keywords: heat transfer process, cyclic process, averaging, linear discrete equation, steady state behavior, periodic mode, Ces'aro mean
Mots-clés : monomial matrix, Cauchy formula, identification.
@article{TIMM_2017_23_1_a4,
     author = {A. A. Azamov and M. A. Bekimov},
     title = {A discrete model of the heat exchange process in rotating regenerative air preheaters},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {12--19},
     year = {2017},
     volume = {23},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a4/}
}
TY  - JOUR
AU  - A. A. Azamov
AU  - M. A. Bekimov
TI  - A discrete model of the heat exchange process in rotating regenerative air preheaters
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 12
EP  - 19
VL  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a4/
LA  - ru
ID  - TIMM_2017_23_1_a4
ER  - 
%0 Journal Article
%A A. A. Azamov
%A M. A. Bekimov
%T A discrete model of the heat exchange process in rotating regenerative air preheaters
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 12-19
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a4/
%G ru
%F TIMM_2017_23_1_a4
A. A. Azamov; M. A. Bekimov. A discrete model of the heat exchange process in rotating regenerative air preheaters. Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 12-19. http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a4/

[1] Kirsanov Yu.A., Tsiklicheskie teplovye protsessy i teoriya teploprovodnosti v regenerativnykh vozdukhopodogrevatelyakh, Fizmatlit, M., 2007, 240 pp.

[2] V.K. Migai, B.S. Nazarenko, I.F. Novozhilov, T.S. Dobryakov, Regenerativnye vraschayuschiesya vozdukhopodogrevateli, Energiya, L., 1971, 168 pp.

[3] Kovalevskii V.P., “Simulation of heat and aerodynamic processes in regenerators of continuous and periodic operation. I. Nonlinear mathematical model and numerical algorithm”, J. Eng. Phys. Thermophys, 77:6 (2004), 1096–1109 | DOI

[4] Chi-Liang Lee, “Regenerative air preheaters with four channels in a power plant system”, J. Chinese Inst. Eng., 32:5 (2009), 703–710 | DOI

[5] H. Wang, L. Zhao, Z. Xu et al., “Analysis on thermal stress deformation of rotary air-preheater in a thermal power plant”, Korean J. Chem. Eng., 26 (2009), 833–839 | DOI

[6] H. Wang, L. Zhao, Z. Xu et al., “The study on heat transfer model of tri-sectional rotary air preheater based on the semi-analytical method”, Appl. Therm. Eng., 28:14–15 (2008), 1882–1888 | DOI

[7] Hazewinkel M., Monomial representation, Encyclopedia Math., Springer, New York, 2001

[8] Gelfond A.O., Ischislenie konechnykh raznostei, Nauka, M., 1967, 432 pp. | MR

[9] Romanko V.K., Kurs raznostnykh uravnenii, Fizmatlit, M., 2012, 200 pp.

[10] Azamov A.A., Bekimov M.A., “Simplified model of the heat exchange process in rotary regenerative air pre-heater”, Ural Math. J., 2:2 (2016), 27–36 | DOI | MR

[11] Van-der-Varden B.L., Algebra, Mir, M., 1976, 648 pp. | MR