Stabilization of discrete time systems by reflection coefficients
Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 306-311 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For single-input single-output discrete-time systems, we consider a stabilization problem by a fixed order controller. A number of examples show that such controller may not exist. It is assumed that the controller depends linearly on a stabilizing parameter. In this case, the stabilizing controller defines an affine subset in the parameter space. We use the well-known property of the Schur stability region in the parameter space. According to this property the closed convex hull of this region is a polytope with known vertices. Every stable vector has a preimage in the open cube $(-1,1)^n$, and this preimage is called the reflection coefficient of this stable polynomial. By using reflection coefficients and polytopic properties of the stability region we obtain the stabilizability condition. This condition is expressed in terms of vertices of the stability region which is a multilinear image of the cube of reflection coefficients.
Keywords: discrete system, stability, affine stabilizer
Mots-clés : reflection coefficient.
@article{TIMM_2017_23_1_a28,
     author = {T. Buyukkorouglu and G. C. Celebi and V. Dzhafarov},
     title = {Stabilization of discrete time systems by reflection coefficients},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {306--311},
     year = {2017},
     volume = {23},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a28/}
}
TY  - JOUR
AU  - T. Buyukkorouglu
AU  - G. C. Celebi
AU  - V. Dzhafarov
TI  - Stabilization of discrete time systems by reflection coefficients
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 306
EP  - 311
VL  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a28/
LA  - ru
ID  - TIMM_2017_23_1_a28
ER  - 
%0 Journal Article
%A T. Buyukkorouglu
%A G. C. Celebi
%A V. Dzhafarov
%T Stabilization of discrete time systems by reflection coefficients
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 306-311
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a28/
%G ru
%F TIMM_2017_23_1_a28
T. Buyukkorouglu; G. C. Celebi; V. Dzhafarov. Stabilization of discrete time systems by reflection coefficients. Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 306-311. http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a28/

[1] Bhattacharyya S.P., Chapellat H. and Keel L. H., Robust control: The parametric approach, Prentice-Hall PTR, New York, 1995, 664 pp. | Zbl

[2] Barmish B.R., New tools for robustness of linear systems, Macmillan Publ., New York, 1994, 410 pp. | Zbl

[3] Fam A.T. and Meditch J.S., “A canonical parameter space for linear systems design”, IEEE Transactions on Automatic Control, 23:3 (1978), 454–458 | DOI | MR | Zbl

[4] Petrikevich Y.I., “Randomized methods of stabilization of the discrete linear systems”, Automation and Remote Control, 69:11 (2008), 1911–1921 | DOI | MR | Zbl

[5] Nurges U. and Avanessov S., “Fixed-order stabilising controller design by a mixed randomized/deterministic method”, Int. J. Control, 88:2 (2015), 335–346 | DOI | MR | Zbl

[6] Fujisaki Y., Oishi Y. and Tempo R., “Mixed deterministic/randomized methods for fixed order controller design”, IEEE Trans. Automat. Control, 53:9 (2008), 2033–2047 | DOI | MR

[7] Malik W.A. , Darbha S. and Bhattacharyya S.P., “A linear programming approach to the synthesis of fixed-structure controllers”, IEEE Trans. Automat. Control, 53:6 (2008), 1341–1352 | DOI | MR

[8] Buyukkoroglu T., “Fixed order controller for Schur stability”, Math. Comput. Appl., 21:2 (2016), 25, 1-9 | DOI | MR

[9] Akyar H. , Buyukkorouglu T. and Dzhafarov V., “On stability of parametrized families of polynomials and matrices”, Abstract and Applied Analysis, 2010, Article ID 687951, 1–16 | DOI | MR

[10] Levinson N., “The Wiener RMS error criterion in filter design and prediction”, J. Math. Phys., 25:1–4 (1946), 261–278 | DOI | MR

[11] Nurges U., “New stability conditions via reflection coefficients of polynomials”, IEEE Trans. Automat. Control, 50:9 (2005), 1354–1360 | DOI | MR