A linear control problem under interference with a payoff depending on the modulus of a linear function
Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 251-261 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a linear control problem in $\mathbb{R}^m$ under the action of an uncontrolled interference. The control process occurs on a given time interval $[t_0,p]$. The possible values of the interference belong to a compact set. The control is sought as the product of a scalar function $\phi(t)\in[\delta,\alpha]$ and a vector function $\xi(t,x)\in M$, $x\in\mathbb{R}^m$. The interval $[\delta, \alpha]$ and the convex symmetric compact set $M$ are given. This definition of the control arises in control problems for mechanical systems of variable composition. For example, the law of variation of a reaction mass is defined as a function of time $t$, and the control affects the direction of relative velocity in which the mass is separated. The terminal part of the payoff depends on the modulus of a linear function of the vector $x(p)$. The integral part of the payoff is the integral over the interval $[t_0,p]$ of a given function $g(t,\phi(t))$, where $g(t,\phi) \geq 0$ for $t \in [t_0,p]$ and $\phi \in [\delta, \alpha]$. The control problem is considered within the theory of guaranteed result optimization. An optimal control existence theorem is proved under rather wide constraints on the class of problems. Sufficient conditions are found under which an admissible control is optimal. An example that illustrates the sufficient conditions is considered.
Keywords: control, interference, payoff, differential game.
@article{TIMM_2017_23_1_a24,
     author = {V. I. Ukhobotov},
     title = {A linear control problem under interference with a payoff depending on the modulus of a linear function},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {251--261},
     year = {2017},
     volume = {23},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a24/}
}
TY  - JOUR
AU  - V. I. Ukhobotov
TI  - A linear control problem under interference with a payoff depending on the modulus of a linear function
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 251
EP  - 261
VL  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a24/
LA  - ru
ID  - TIMM_2017_23_1_a24
ER  - 
%0 Journal Article
%A V. I. Ukhobotov
%T A linear control problem under interference with a payoff depending on the modulus of a linear function
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 251-261
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a24/
%G ru
%F TIMM_2017_23_1_a24
V. I. Ukhobotov. A linear control problem under interference with a payoff depending on the modulus of a linear function. Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 251-261. http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a24/

[1] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR

[2] Aizeks R., Differentsialnye igry, Mir, M., 1967, 479 pp.

[3] Pontryagin L.S., “Lineinye differentsialnye igry presledovaniya”, Mat. sb. Novaya seriya, 112:3 (1980), 307–330 | MR | Zbl

[4] Ukhobotov V.I., Metod odnomernogo proektirovaniya v lineinykh differentsialnykh igrakh s integralnymi ogranicheniyami, ucheb. posobie, Izd-vo Chelyab. gos. un-ta, Chelyabinsk, 2005, 124 pp.

[5] Ukhobotov V.I., “Odnotipnye differentsialnye igry s vypukloi tselyu”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:5 (2010), 196–204

[6] Ukhobotov V.I., Guschin D.V., “Odnotipnye differentsialnye igry s vypukloi integralnoi platoi”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17:1 (2011), 251–258 | Zbl

[7] Krasovskii N.N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 475 pp. | MR

[8] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972, 496 pp.

[9] Kudryavtsev L.D., Kurs matematicheskogo analiza, v. 1, Vyssh. shk., M., 1981, 687 pp.

[10] Pshenichnyi B.N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980, 319 pp.

[11] Hermes H., “The generalized differential equation $\dot{x}\in R(t,x)$”, Advances Math., 4:9 (1970), 149–169 | DOI | MR | Zbl

[12] Filippov A.F., “O nekotorykh voprosakh teorii optimalnogo regulirovaniya”, Vestn. MGU (Matematika, mekhanika.), 1959, no. 2, 25–32 | Zbl

[13] Riss F., Sekelfalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979, 587 pp.