@article{TIMM_2017_23_1_a23,
author = {A. A. Uspenskii},
title = {Weak invariance of a cylindrical set with smooth boundary with respect to a control system},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {241--250},
year = {2017},
volume = {23},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a23/}
}
TY - JOUR AU - A. A. Uspenskii TI - Weak invariance of a cylindrical set with smooth boundary with respect to a control system JO - Trudy Instituta matematiki i mehaniki PY - 2017 SP - 241 EP - 250 VL - 23 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a23/ LA - ru ID - TIMM_2017_23_1_a23 ER -
A. A. Uspenskii. Weak invariance of a cylindrical set with smooth boundary with respect to a control system. Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 241-250. http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a23/
[1] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR
[2] Krasovskii N.N., “Igrovye zadachi dinamiki. I”, Izv. AN SSSR. Tekhn. kibernetika, 1969, no. 5, 3–12
[3] Krasovskii N.N., Subbotin A.I., “O strukture differentsialnykh igr”, Dokl. AN SSSR, 190:3 (1970), 523–526
[4] Krasovskii N.N., Subbotin A.I., “Approksimatsiya v differentsialnykh igrakh”, Prikl. matematika i mekhanika, 37:2 (1973), 197–204
[5] Krasovskii N.N., “K zadache unifikatsii differentsialnykh igr”, Dokl. AN SSSR, 226:6 (1976), 1260–1263 | MR
[6] Subbotin A.I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka. Perspektivy dinamicheskoi optimizatsii, In-t kompyut. issled., M.; Izhevsk, 2003, 336 pp.
[7] Tarasev A.M., Uspenskii A.A., Ushakov V.N., “Approksimatsionnye operatory i konechno-raznostnye skhemy dlya postroeniya obobschennykh reshenii uravnenii Gamiltona - Yakobi”, Izv. RAN Tekhnicheskaya kibernetika, 1994, no. 3, 173–185 | Zbl
[8] Guseinov H.G., Subbotin A.I., Ushakov V.N., “Derivatives for multivalued mappings with applications to game-theoretical problems of control”, Problem Control Inform. Theory, 14:6 (1985), 405–419 | MR
[9] Roxin E., “A uniqueness theorem for differential inclusions”, Diff. Equ., 1:2 (1965), 115–150 | DOI | MR | Zbl
[10] Aubin J.-P., Cellina A., Differential inclusions. Set valued maps and viability theory, Berlin, 1984, 342 pp. | MR
[11] Nguen Chan, “Invariantnye i ustoichivye semeistva mnozhestv otnositelno differentsialnykh vklyuchenii”, Differents. uravneniya, 19:8 (1983), 1357–1366 | MR | Zbl
[12] Kurzhanskii A.B., Filippova T.F., “Differentsialnye vklyucheniya s fazovymi ogranicheniyami. Metod vozmuschenii”, Tr. MIAN: Optimalnoe upravlenie i differents. uravneniya, 211 (1995), 304–315 | MR
[13] Frankowska H., Plaskacz S., Rzezuchowski T., “Theoremes de viabilite mesurables et l'equation d'Hamilton-Jacobi-Bellman”, C. r. Acad. sei. Paris. Ser. 1, 315 (1992), 131–134 | MR | Zbl
[14] Kurzhanski A., Valyi I., Ellipsoidal calculus for estimation and control, Birkhauser, Basel, 1997, 321 pp. | MR | Zbl
[15] Chernousko F.L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem: Metod ellipsoidov, Nauka, M., 1988, 320 pp.
[16] Polyak B.T., Khlebnikov M.V., Scherbakov P.S., Upravlenie lineinymi sistemami pri vneshnikh vozmuscheniyakh: Tekhnika lineinykh matrichnykh neravenstv, LENAND, M., 2014, 560 pp.
[17] Ushakov V.N., “K zadache postroeniya stabilnykh mostov v differentsialnoi igre sblizheniya-ukloneniya”, Izv. AN SSSR. Tekhn. kibernetika, 1980, no. 4, 29–36 | Zbl
[18] Ushakov V.N., Latushkin Ya.A., “Defekt stabilnosti mnozhestv v igrovykh zadachakh upravleniya”, Tr. In-ta matematiki i mekhaniki, 12:2 (2006), 178–194 | Zbl
[19] Ushakov V.N., Uspenskii A.A., “K svoistvu stabilnosti v differentsialnykh igrakh”, Dokl. AN, 443:5 (2012), 549–554 | Zbl
[20] Strekalovskii A.S., Elementy nevypukloi optimizatsii, Nauka, Novosibirsk, 2003, 356 pp.
[21] Demyanov V.F., Vasilev L.V., Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981, 384 pp.