Transfinite sequences in the method of programmed iterations
Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 228-240

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of retaining the motions of an abstract dynamic system in a given constraint set. Constructions from the method of programmed iterations are extended to problems whose dynamics, in general, does not possess any topological properties. The weaker requirements are compensated by introducing transfinite iterations of the programmed absorption operator. The technique of fixed points of mappings in inductive partially ordered sets is used in the proofs. The proposed procedure produces the set where the problem under consideration is successfully solved in the class of quasistrategies. The control interval is not assumed to be finite.
Keywords: method of programmed iterations, transfinite iterations, quasistrategies, fixed points, inductive posets.
@article{TIMM_2017_23_1_a22,
     author = {D. A. Serkov},
     title = {Transfinite sequences in the method of programmed iterations},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {228--240},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a22/}
}
TY  - JOUR
AU  - D. A. Serkov
TI  - Transfinite sequences in the method of programmed iterations
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 228
EP  - 240
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a22/
LA  - ru
ID  - TIMM_2017_23_1_a22
ER  - 
%0 Journal Article
%A D. A. Serkov
%T Transfinite sequences in the method of programmed iterations
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 228-240
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a22/
%G ru
%F TIMM_2017_23_1_a22
D. A. Serkov. Transfinite sequences in the method of programmed iterations. Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 228-240. http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a22/