A nonlinear identification problem
Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 206-211

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a nonlinear dynamic system with an unknown vector parameter in its description. An observer can calculate the phase vector of this system on the interval $[0,T]$ with an error whose modulus does not exceed a small value $h>0$. This information on the dynamics of the system should be used to find the unknown vector. We obtain constructive sufficient conditions under which it is possible to restore the unknown vector with decreasing error as the value of $h$ tends to zero. It turns out that it is sufficient to use discrete measurements of the output of the system.
Mots-clés : identification
Keywords: dynamic systems, inverse problems.
@article{TIMM_2017_23_1_a19,
     author = {M. S. Nikol'skii},
     title = {A nonlinear identification problem},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {206--211},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a19/}
}
TY  - JOUR
AU  - M. S. Nikol'skii
TI  - A nonlinear identification problem
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 206
EP  - 211
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a19/
LA  - ru
ID  - TIMM_2017_23_1_a19
ER  - 
%0 Journal Article
%A M. S. Nikol'skii
%T A nonlinear identification problem
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 206-211
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a19/
%G ru
%F TIMM_2017_23_1_a19
M. S. Nikol'skii. A nonlinear identification problem. Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 206-211. http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a19/