Bilinear optimal control problem of a discrete logging
Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 188-194 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the proposed mathematical model a forest manager at each specified moment of time makes decisions on harvesting the trees of a certain type (species) and age (age group) in order to maximize their profit. When planning logging, the manager focuses on price projections and takes into account economic costs. The Pontryagin maximum principle is applied for solving the discrete-time optimal control problem arising in the model. A solution is derived in a constructive manner without computational costs associated with the problem's high-dimensionality. Analytical results, explaining the optimal solution, are provided. For a typically defined problem the optimality condition is derived, which determines the bang-bang solution. The condition includes the discrete dynamics of the adjoint variable, interpreted as the wood shadow price. The rule that is obtained is treated as the dynamic rationale for logging a certain type and age of forest. Structural flexibility of the proposed mathematical model facilitates its application in forest management. In proving theoretical results in the paper, the authors propose a method that they have not come across in the literature.
Keywords: Pontryagin's maximum principle, discrete forest management model.
@article{TIMM_2017_23_1_a17,
     author = {A. A. Krasovskii and A. S. Platov},
     title = {Bilinear optimal control problem of a discrete logging},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {188--194},
     year = {2017},
     volume = {23},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a17/}
}
TY  - JOUR
AU  - A. A. Krasovskii
AU  - A. S. Platov
TI  - Bilinear optimal control problem of a discrete logging
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 188
EP  - 194
VL  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a17/
LA  - ru
ID  - TIMM_2017_23_1_a17
ER  - 
%0 Journal Article
%A A. A. Krasovskii
%A A. S. Platov
%T Bilinear optimal control problem of a discrete logging
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 188-194
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a17/
%G ru
%F TIMM_2017_23_1_a17
A. A. Krasovskii; A. S. Platov. Bilinear optimal control problem of a discrete logging. Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 188-194. http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a17/

[1] Faustmann M., “Berechnung des Werthes, welchen Waldboden, sowie noch nicht haubare Holzbestande fur die Waldwirthschaft besitzen”, Allgemeine Forst- und Jagd-Zeitung, 1849, 441–455

[2] Clark C., Mathematical bioeconomics: the optimal management of renewable resources, 2nd ed., John Wiley Sons Inc., New York, 1990, 400 pp. | MR | Zbl

[3] G.N. Korovin, N.V. Zukert, M.D. Korzukhin, V.V. Nefedev, Lesnye resursy: dinamika, prognozirovanie i optimalnoe upravlenie, avt. vstupit. st. V.V. Nefedev, ed. nauch. red. M.D. Korzukhin, Tsentr po problemam ekologii i produktivnosti lesov Rossiiskoi akademii nauk, M., 2013, 176 pp.

[4] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, E.F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, 2-e izd., Nauka, M., 1969, 393 pp.

[5] Boltyanskii V.G., Optimalnoe upravlenie diskretnymi sistemami, Nauka, M., 1973, 446 pp. | MR

[6] Reed W.J., Errico D., “Optimal harvest scheduling at the forest level in the presence of the risk of fire”, Can. J. For. Res., 16:2 (1986), 266–278 | DOI

[7] Sohngen B., Mendelsohn R., Sedjo R., “Forest management, conservation, and global timber markets”, Am. J. Agric. Econ., 81:1 (1999), 1–13 | DOI

[8] Tahvonen O., “Economics of rotation and thinning revisited: the optimality of clearcuts versus continuous cover forestry”, For. Policy Econ., 62 (2016), 88–94 | DOI