Morphological projector in the $L_0$ metric and the problem of localization of structural differences between images
Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 171-187 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the problem of localization of structural differences between two images given by Borel functions on a bounded planar set. For the case of finite-valued images, we propose a new algorithm for the calculation of the difference domain based on the morphological projection in the $L_0$ metric. It is shown that the algorithm gives an exact solution for a wide class of structural differences. It turned out that the algorithm based on the morphological projection in $L_2$ does not give an exact solution in the class of bounded structural changes. For the case of discrete images, when one of them is perturbed by a discrete independent normal white noise, we construct an algorithm for the calculation of the difference domain and show that the symmetric measure of the difference between the algorithm's output and the true difference set vanishes in probability under the unbounded growth of the ratio of the minimum jump to the standard deviation of the noise. We obtain a new estimate for the location of global maximum points for a Gaussian mixture of a special form.
Keywords: morphological analysis of images, morphological projector, Gaussian mixture, metric $L_0$, structural changes.
@article{TIMM_2017_23_1_a16,
     author = {V. B. Kostousov and D. S. Perevalov},
     title = {Morphological projector in the $L_0$ metric and the problem of localization of structural differences between images},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {171--187},
     year = {2017},
     volume = {23},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a16/}
}
TY  - JOUR
AU  - V. B. Kostousov
AU  - D. S. Perevalov
TI  - Morphological projector in the $L_0$ metric and the problem of localization of structural differences between images
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 171
EP  - 187
VL  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a16/
LA  - ru
ID  - TIMM_2017_23_1_a16
ER  - 
%0 Journal Article
%A V. B. Kostousov
%A D. S. Perevalov
%T Morphological projector in the $L_0$ metric and the problem of localization of structural differences between images
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 171-187
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a16/
%G ru
%F TIMM_2017_23_1_a16
V. B. Kostousov; D. S. Perevalov. Morphological projector in the $L_0$ metric and the problem of localization of structural differences between images. Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 171-187. http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a16/

[1] Pytev Yu.P., “Morfologicheskie ponyatiya v zadachakh analiza izobrazhenii”, Dokl. AN SSSR, 224:6 (1975), 1283–1286 | MR | Zbl

[2] Pytev Yu.P., Chulichkov A.I., Metody morfologicheskogo analiza izobrazhenii, Fizmatlit, M., 2010, 336 pp.

[3] Vizilter Yu.V., “Obobschennaya proektivnaya morfologiya”, Kompyuternaya optika, 32:4 (2008), 384–399, ISSN 0134-2452

[4] Perevalov D.S., “Predelnaya teorema dlya smeschennoi metriki Khemminga v zadache klassifikatsii s izvestnym urovnem strukturnogo shuma”, Sovremennye problemy matematiki i ee prilozheniya, tr. 45-i Mezhdunar. mol. shk.-konf., IMM UrO RAN; UrFU, Ekaterinburg, 2014, 208–211

[5] Kornilov F.A., Razrabotka metodov raspoznavaniya strukturnykh razlichii izobrazhenii, avtoref. dis. kand. fiz.-mat. nauk, Chelyabinsk, 2015, 16 pp.

[6] Kornilov F.A., Perevalov D.S., “Ob odnoi probleme optimizatsii, voznikayuschei pri ispolzovanii metriki Khemminga v zadache strukturnogo sravneniya izobrazhenii”, Matematicheskoe programmirovanie i prilozheniya, 15-ya Vseros. konf., IMM UrO RAN, Ekaterinburg, 2015, 156–157

[7] J. Weston, A. Elisseff, B. Schoelkopf, M. Tipping, “Use of the zero norm with linear models and kernel methods”, J. Mach. Learn. Res., 3, Spec. Issue Var. Feature Sel. (2003), 1439–1461 | MR | Zbl

[8] Grootschel M., Lovasz L., “Combinatorial optimization”, Handbook of Combinatorics, v. 2, eds. R.O. Graham, M. Grotschel, L. Lovasz, Elsevier Science B.V., Amsterdam, 1995, 1341–1598 | MR

[9] Hamming R.W., “Error detecting and error correcting codes”, Bell System Tech. J., 29:2 (1950), 147–160 | DOI | MR

[10] Everitt B., Hand D.J., Finite mixture distributions, Ser. Book Monographs on Applied Probability and Statistics, Chapman and Hall, London; New York, 1981, 143 pp. | DOI | MR | Zbl

[11] Robertson C.A., Fryer J.G., “Some descriptive properties of normal mixture”, Scandinavian Actuarial J., 1969, no. 3–4, 137–146 | DOI | MR

[12] Behboodian J., “On the modes of a mixture of two normal distributions”, Technometrics, 12:1 (1970), 131–139 | DOI | Zbl

[13] Aprausheva N.N., Sorokin S.V., “Ob unimodalnosti prosteishei gaussovoi smesi”, Zhurn. vychisl. matematiki i mat. fiziki, 44:5 (2004), 838–846 | MR

[14] Schilling M.F., Watkins A.E., Watkins W., “Is human height bimodal”, Amer. Statist., 56:3 (2002), 223–229 | DOI | MR

[15] Yakubov V.P., Statisticheskaya radiofizika, uch. posobie, Izd. NTL, Tomsk, 2006, 132 pp.

[16] Glivenko V., “Sulla determinazione empirica della legge di probabilita”, Giorn. Ist. Ital. Attuari, 4 (1933), 92–99

[17] Cantelli F.P., “Sulla determinazione empirica delle leggi di probabilita”, Giorn. Ist. Ital. Attuari, 4 (1933), 221–424

[18] Roxy P., Devore J.L., Statistics: The Exploration and analysis of data, Cengage Learning, New York etc., 2011, 816 pp.

[19] The USC-SIPI Image Database, Izobrazhenie Lena URL: http://sipi.usc.edu/database/database.php?volume=misc&image=12