Mots-clés : M-solution
@article{TIMM_2017_23_1_a15,
author = {E. A. Kolpakova},
title = {On the solution of a system of {Hamilton-Jacobi} equations of special form},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {158--170},
year = {2017},
volume = {23},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a15/}
}
E. A. Kolpakova. On the solution of a system of Hamilton-Jacobi equations of special form. Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 158-170. http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a15/
[1] Friedman A., Differential games, Courier corporation, 2013, 368 pp.
[2] Bressan A., Shen W., “Small BV solutions of hyperbolic noncooperative differential games”, SIAM J. Control Optim., 43:1 (2004), 194–215 | DOI | MR | Zbl
[3] Averboukh Yu., “Universal Nash equilibrium strategies for differential games”, J. Dyn. Control Syst., 21:3 (2015), 329–350 | DOI | MR | Zbl
[4] Ostrov D.N., “Nonuniqueness in systems of Hamilton-Jacobi equations”, Optimal Control, Stabilization and Nonsmooth Analysis, Lect. Notes Control Inf. Sci., 301, Springer, Berlin, 2004, 49–59 | DOI | MR | Zbl
[5] Zheng Y.P., Basar T., Cruz J.B., “Stackelberg strategies and incentives in multiperson deterministic decision problems”, IEEE Trans. Syst. Man Cybern., 14 (1984), 10–24 | DOI | MR | Zbl
[6] Huang F., “Existence and uniqueness of discontinuous solutions for a class of nonstrictly hyperbolic systems”, Proc. Roy. Soc. Edinburgh Sect. A, 1997, no. 6, 1193–1205 | DOI | MR | Zbl
[7] Shelkovich V.M., “Usloviya Renkina-Gyugonio i balansovye zakony dlya $\delta$-udarnykh voln”, Fundamentalnaya i prikl. matematika, 12:6 (2006), 213–229
[8] Subbotin A.I., Obobschennye resheniya uravneniya v chastnykh proizvodnykh pervogo poryadka: perspektivy dinamicheskoi optimizatsii, Institut kompyuternykh issledovanii, M.; Izhevsk, 2003, 336 pp.
[9] Lakhtin A.S., Subbotin A.I., “Mnogoznachnye resheniya uravnenii s chastnymi proizvodnymi pervogo poryadka”, Mat. sb., 189 (1998), 33–59 | DOI | MR
[10] N.N. Subbotina, E.A. Kolpakova, T.B. Tokmantsev, L.G. Shagalova, Metod kharakteristik dlya uravneniya Gamiltona-Yakobi-Bellmana, Izd-vo UrO RAN, Ekaterinburg, 2013, 244 pp.
[11] Subbotina N.N., “The method of characteristics for Hamilton-Jacobi equation and its applications in dynamical optimization”, J. Math. Sci., 135:3 (2006), 2955–3091 ; Modern Math. Appl., 20 | DOI | MR | Zbl
[12] Kolpakova E.A., “Obobschennyi metod kharakteristik v teorii uravnenii Gamiltona-Yakobi i zakonov sokhraneniya”, Tr. Instituta matematiki i mekhaniki UrO RAN, 16:5 (2010), 95–102
[13] Evans L.C., Partial differential equations, Grad. Stud. Math., 19, Amer. Math. Soc., Providence, 1998, 662 pp. | MR | Zbl
[14] Crandall M.G, Lions P.L., “Viscosity solutions of Hamilton-Jacobi equations”, Trans. Amer. Math. Soc., 277 (1983), 1–42 | DOI | MR | Zbl
[15] Oleinik O.A., “Zadacha Koshi dlya nelineinykh differentsialnykh uravnenii pervogo poryadka s razryvnymi nachalnymi usloviyami”, Tr. Mosk. mat. obschestva, 5 (1956), 433–454 | Zbl
[16] Dafermos C.M., Hyperbolic conservation laws in continuum physics, Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin; Heidelberg, 2010, 636 pp. | DOI | MR | Zbl