On the solution of a system of Hamilton-Jacobi equations of special form
Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 158-170 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is concerned with the investigation of a system of first-order Hamilton-Jacobi equations. We consider a strongly coupled hierarchical system: the first equation is independent of the second, and the Hamiltonian of the second equation depends on the gradient of the solution of the first equation. The system can be solved sequentially. The solution of the first equation is understood in the sense of the theory of minimax (viscosity) solutions and can be obtained with the help of the Lax-Hopf formula. The substitution of the solution of the first equation in the second Hamilton-Jacobi equation results in a Hamilton-Jacobi equation with discontinuous Hamiltonian. This equation is solved with the use of the idea of M-solutions proposed by A.I. Subbotin, and the solution is chosen from the class of set-valued mappings. Thus, the solution of the original system of Hamilton-Jacobi equations is the direct product of a single-valued and set-valued mappings, which satisfy the first and the second equations in the minimax and M-solution sense, respectively. In the case when the solution of the first equation is nondifferentiable only along one Rankine-Hugoniot line, existence and uniqueness theorems are proved. A representative formula for the solution of the system is obtained in terms of Cauchy characteristics. The properties of the solution and their dependence on the parameters of the problem are investigated.
Keywords: system of Hamilton-Jacobi equations, minimax solution, Cauchy method of characteristics.
Mots-clés : M-solution
@article{TIMM_2017_23_1_a15,
     author = {E. A. Kolpakova},
     title = {On the solution of a system of {Hamilton-Jacobi} equations of special form},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {158--170},
     year = {2017},
     volume = {23},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a15/}
}
TY  - JOUR
AU  - E. A. Kolpakova
TI  - On the solution of a system of Hamilton-Jacobi equations of special form
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 158
EP  - 170
VL  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a15/
LA  - ru
ID  - TIMM_2017_23_1_a15
ER  - 
%0 Journal Article
%A E. A. Kolpakova
%T On the solution of a system of Hamilton-Jacobi equations of special form
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 158-170
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a15/
%G ru
%F TIMM_2017_23_1_a15
E. A. Kolpakova. On the solution of a system of Hamilton-Jacobi equations of special form. Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 158-170. http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a15/

[1] Friedman A., Differential games, Courier corporation, 2013, 368 pp.

[2] Bressan A., Shen W., “Small BV solutions of hyperbolic noncooperative differential games”, SIAM J. Control Optim., 43:1 (2004), 194–215 | DOI | MR | Zbl

[3] Averboukh Yu., “Universal Nash equilibrium strategies for differential games”, J. Dyn. Control Syst., 21:3 (2015), 329–350 | DOI | MR | Zbl

[4] Ostrov D.N., “Nonuniqueness in systems of Hamilton-Jacobi equations”, Optimal Control, Stabilization and Nonsmooth Analysis, Lect. Notes Control Inf. Sci., 301, Springer, Berlin, 2004, 49–59 | DOI | MR | Zbl

[5] Zheng Y.P., Basar T., Cruz J.B., “Stackelberg strategies and incentives in multiperson deterministic decision problems”, IEEE Trans. Syst. Man Cybern., 14 (1984), 10–24 | DOI | MR | Zbl

[6] Huang F., “Existence and uniqueness of discontinuous solutions for a class of nonstrictly hyperbolic systems”, Proc. Roy. Soc. Edinburgh Sect. A, 1997, no. 6, 1193–1205 | DOI | MR | Zbl

[7] Shelkovich V.M., “Usloviya Renkina-Gyugonio i balansovye zakony dlya $\delta$-udarnykh voln”, Fundamentalnaya i prikl. matematika, 12:6 (2006), 213–229

[8] Subbotin A.I., Obobschennye resheniya uravneniya v chastnykh proizvodnykh pervogo poryadka: perspektivy dinamicheskoi optimizatsii, Institut kompyuternykh issledovanii, M.; Izhevsk, 2003, 336 pp.

[9] Lakhtin A.S., Subbotin A.I., “Mnogoznachnye resheniya uravnenii s chastnymi proizvodnymi pervogo poryadka”, Mat. sb., 189 (1998), 33–59 | DOI | MR

[10] N.N. Subbotina, E.A. Kolpakova, T.B. Tokmantsev, L.G. Shagalova, Metod kharakteristik dlya uravneniya Gamiltona-Yakobi-Bellmana, Izd-vo UrO RAN, Ekaterinburg, 2013, 244 pp.

[11] Subbotina N.N., “The method of characteristics for Hamilton-Jacobi equation and its applications in dynamical optimization”, J. Math. Sci., 135:3 (2006), 2955–3091 ; Modern Math. Appl., 20 | DOI | MR | Zbl

[12] Kolpakova E.A., “Obobschennyi metod kharakteristik v teorii uravnenii Gamiltona-Yakobi i zakonov sokhraneniya”, Tr. Instituta matematiki i mekhaniki UrO RAN, 16:5 (2010), 95–102

[13] Evans L.C., Partial differential equations, Grad. Stud. Math., 19, Amer. Math. Soc., Providence, 1998, 662 pp. | MR | Zbl

[14] Crandall M.G, Lions P.L., “Viscosity solutions of Hamilton-Jacobi equations”, Trans. Amer. Math. Soc., 277 (1983), 1–42 | DOI | MR | Zbl

[15] Oleinik O.A., “Zadacha Koshi dlya nelineinykh differentsialnykh uravnenii pervogo poryadka s razryvnymi nachalnymi usloviyami”, Tr. Mosk. mat. obschestva, 5 (1956), 433–454 | Zbl

[16] Dafermos C.M., Hyperbolic conservation laws in continuum physics, Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin; Heidelberg, 2010, 636 pp. | DOI | MR | Zbl