@article{TIMM_2017_23_1_a12,
author = {A. Huseyin and N. Huseyin and Kh. G. Guseinov},
title = {Approximation of sections of the set of trajectories for a control system with bounded control resources},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {116--127},
year = {2017},
volume = {23},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a12/}
}
TY - JOUR AU - A. Huseyin AU - N. Huseyin AU - Kh. G. Guseinov TI - Approximation of sections of the set of trajectories for a control system with bounded control resources JO - Trudy Instituta matematiki i mehaniki PY - 2017 SP - 116 EP - 127 VL - 23 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a12/ LA - ru ID - TIMM_2017_23_1_a12 ER -
%0 Journal Article %A A. Huseyin %A N. Huseyin %A Kh. G. Guseinov %T Approximation of sections of the set of trajectories for a control system with bounded control resources %J Trudy Instituta matematiki i mehaniki %D 2017 %P 116-127 %V 23 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a12/ %G ru %F TIMM_2017_23_1_a12
A. Huseyin; N. Huseyin; Kh. G. Guseinov. Approximation of sections of the set of trajectories for a control system with bounded control resources. Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 116-127. http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a12/
[1] Chentsov A.G., “Approximative realization of integral constraints and generalized constructions in the class of vector finitely additive measures”, Proc. Steklov Inst. Math., no. Suppl. 2, 2002, S10-S60 | MR | Zbl
[2] Krasovskii N.N., Teoriya upravleniya dvizheniem: Lineinye sistemy, Nauka, M., 1968, 476 pp.
[3] Krasovskii N.N., Subbotin A.I., Ushakov V.N., “Minimaksnaya differentsialnaya igra”, Dokl. AN SSSR, 206:2 (1972), 277–280
[4] Subbotina N.N., Subbotin A.I., “Alternative for the encounter-evasion differential game with constraints on the momenta of the players controls”, J. Appl. Math. Mech., 39:3 (1975), 376–385 | DOI | MR | Zbl
[5] Vdovina O.I., Sesekin A.N., “Numerical construction of attainability domains for systems with impulse control”, Proc. Steklov Inst. Math., no. Suppl. 1, 2005, S246–S255 | MR | Zbl
[6] Ukhobotov V.I., Metod odnomernogo proektirovaniya v lineinykh differentsialnykh igrakh s integralnymi ogranicheniyami, Izd-vo ChelGU, Chelyabinsk, 2005, 124 pp.
[7] Angell T.S., George R.K., Sharma J.P., “Controllability of Urysohn integral inclusions of Volterra type”, Electron. J. Diff. Equat., 79 (2010), 1–12 | MR
[8] Bennati M.L., “An existence theorem for optimal controls of systems defined by Uryson integral equations”, Ann. Mat. Pura. Appl., 121:4 (1979), 187–197 | DOI | MR | Zbl
[9] Huseyin A., Huseyin N., Guseinov Kh.G., “Approximation of the sections of the set of trajectories of the control system described by a nonlinear Volterra integral equation”, Math. Model. Anal., 20:4 (2015), 502–515 | DOI | MR
[10] Guseiin N., Guseiin A., Guseinov Kh.G., “Approksimatsiya mnozhestva traektorii upravlyaemoi sistemy, opisyvaemoi integralnym uravneniem Urysona”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:2 (2015), 59–72 | MR
[11] Matviichuk A.R., Ushakov V.N., “On the construction of resolving controls in control problems with phase constraints”, J. Comput. Syst. Sci. Int., 45:1 (2006), 1–16 | DOI | MR
[12] Huseyin A., “On the existence of $\varepsilon$-optimal trajectories of the control systems with constrained control resources”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 66:1 (2017), 75–84 | DOI
[13] Aubin J.-P., Frankowska H., Set-valued analysis, Birkhauser, Boston, 1990, 461 pp. | MR | Zbl
[14] Huseyin A., “On the approximation of the set of trajectories of control system described by a Volterra integral equation”, Nonlin. Anal. Model. Contr., 19:2 (2014), 199–208 | MR | Zbl