Approximation of sections of the set of trajectories for a control system with bounded control resources
Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 116-127 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A. Huseyin, N. Huseyin, Kh. Guseinov. Approximation of sections of the set of trajectories for a control system with bounded control resources. The approximation of the set of trajectories is studied for a control system described by the Urysohn integral equation. It is assumed that the system has limited control resources. The closed ball of the space $L_p$, $p>1$, with radius $r$ centered at the origin is chosen as the set of admissible control functions. The set of admissible control functions is replaced step by step by a set that consists of a finite number of control functions and generates a finite number of trajectories. It is proved that sections of the set of trajectories can be approximated by sections of a set consisting of a finite number of trajectories.
Keywords: Urysohn integral equation, control system, integral constraint, set of trajectories, approximation.
@article{TIMM_2017_23_1_a12,
     author = {A. Huseyin and N. Huseyin and Kh. G. Guseinov},
     title = {Approximation of sections of the set of trajectories for a control system with bounded control resources},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {116--127},
     year = {2017},
     volume = {23},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a12/}
}
TY  - JOUR
AU  - A. Huseyin
AU  - N. Huseyin
AU  - Kh. G. Guseinov
TI  - Approximation of sections of the set of trajectories for a control system with bounded control resources
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 116
EP  - 127
VL  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a12/
LA  - ru
ID  - TIMM_2017_23_1_a12
ER  - 
%0 Journal Article
%A A. Huseyin
%A N. Huseyin
%A Kh. G. Guseinov
%T Approximation of sections of the set of trajectories for a control system with bounded control resources
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 116-127
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a12/
%G ru
%F TIMM_2017_23_1_a12
A. Huseyin; N. Huseyin; Kh. G. Guseinov. Approximation of sections of the set of trajectories for a control system with bounded control resources. Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 116-127. http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a12/

[1] Chentsov A.G., “Approximative realization of integral constraints and generalized constructions in the class of vector finitely additive measures”, Proc. Steklov Inst. Math., no. Suppl. 2, 2002, S10-S60 | MR | Zbl

[2] Krasovskii N.N., Teoriya upravleniya dvizheniem: Lineinye sistemy, Nauka, M., 1968, 476 pp.

[3] Krasovskii N.N., Subbotin A.I., Ushakov V.N., “Minimaksnaya differentsialnaya igra”, Dokl. AN SSSR, 206:2 (1972), 277–280

[4] Subbotina N.N., Subbotin A.I., “Alternative for the encounter-evasion differential game with constraints on the momenta of the players controls”, J. Appl. Math. Mech., 39:3 (1975), 376–385 | DOI | MR | Zbl

[5] Vdovina O.I., Sesekin A.N., “Numerical construction of attainability domains for systems with impulse control”, Proc. Steklov Inst. Math., no. Suppl. 1, 2005, S246–S255 | MR | Zbl

[6] Ukhobotov V.I., Metod odnomernogo proektirovaniya v lineinykh differentsialnykh igrakh s integralnymi ogranicheniyami, Izd-vo ChelGU, Chelyabinsk, 2005, 124 pp.

[7] Angell T.S., George R.K., Sharma J.P., “Controllability of Urysohn integral inclusions of Volterra type”, Electron. J. Diff. Equat., 79 (2010), 1–12 | MR

[8] Bennati M.L., “An existence theorem for optimal controls of systems defined by Uryson integral equations”, Ann. Mat. Pura. Appl., 121:4 (1979), 187–197 | DOI | MR | Zbl

[9] Huseyin A., Huseyin N., Guseinov Kh.G., “Approximation of the sections of the set of trajectories of the control system described by a nonlinear Volterra integral equation”, Math. Model. Anal., 20:4 (2015), 502–515 | DOI | MR

[10] Guseiin N., Guseiin A., Guseinov Kh.G., “Approksimatsiya mnozhestva traektorii upravlyaemoi sistemy, opisyvaemoi integralnym uravneniem Urysona”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:2 (2015), 59–72 | MR

[11] Matviichuk A.R., Ushakov V.N., “On the construction of resolving controls in control problems with phase constraints”, J. Comput. Syst. Sci. Int., 45:1 (2006), 1–16 | DOI | MR

[12] Huseyin A., “On the existence of $\varepsilon$-optimal trajectories of the control systems with constrained control resources”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 66:1 (2017), 75–84 | DOI

[13] Aubin J.-P., Frankowska H., Set-valued analysis, Birkhauser, Boston, 1990, 461 pp. | MR | Zbl

[14] Huseyin A., “On the approximation of the set of trajectories of control system described by a Volterra integral equation”, Nonlin. Anal. Model. Contr., 19:2 (2014), 199–208 | MR | Zbl