@article{TIMM_2017_23_1_a11,
author = {M. I. Gusev and I. V. Zykov},
title = {On extremal properties of the boundary points of reachable sets for control systems with integral constraints},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {103--115},
year = {2017},
volume = {23},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a11/}
}
TY - JOUR AU - M. I. Gusev AU - I. V. Zykov TI - On extremal properties of the boundary points of reachable sets for control systems with integral constraints JO - Trudy Instituta matematiki i mehaniki PY - 2017 SP - 103 EP - 115 VL - 23 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a11/ LA - ru ID - TIMM_2017_23_1_a11 ER -
%0 Journal Article %A M. I. Gusev %A I. V. Zykov %T On extremal properties of the boundary points of reachable sets for control systems with integral constraints %J Trudy Instituta matematiki i mehaniki %D 2017 %P 103-115 %V 23 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a11/ %G ru %F TIMM_2017_23_1_a11
M. I. Gusev; I. V. Zykov. On extremal properties of the boundary points of reachable sets for control systems with integral constraints. Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 103-115. http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a11/
[1] Krasovskii N.N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp.
[2] Kurzhanskii A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp. | MR
[3] Subbotin A. I., Ushakov V. N., “Alternativa dlya differentsialnoi igry sblizheniya-ukloneniya pri integralnykh ogranicheniyakh na upravleniya igrokov”, Prikl. matematika i mekhanika, 39:3 (1975), 387–396 | MR | Zbl
[4] Ukhobotov V.I., “Ob odnom klasse differentsialnykh igr s integralnymi ogranicheniyami”, Prikl. matematika i mekhanika, 41:5 (1977), 819–824 | MR
[5] Ushakov V.N., “Ekstremalnye strategii v differentsialnykh igrakh s integralnymi ogranicheniyami”, Prikl. matematika i mekhanika, 36:1 (1972), 15–23 | Zbl
[6] Polyak B.T., “Sonvexity of the reachable set of nonlinear systems under l2 bounded controls”, Dyn. Contin. Discrete Impuls. Syst. Ser. A: Math. Anal, 11 (2004), 255–267 | MR | Zbl
[7] Huseyin N., Huseyin A., “Compactness of the set of trajectories of the controllable system described by an affineintegral equation”, Appl. Math. Comput., 219 (2013), 8416–8424 | DOI | MR | Zbl
[8] Guseinov Kh. G., Nazlipinar A. S., “Attainable sets of the control system with limited resources”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:5 (2010), 261–268
[9] K.G. Guseinov, O. Ozer, E. Akyar, V.N. Ushakov, “The approximation of reachable sets of control systems with integral constraint on controls”, NoDEA Nonlinear Diff. Equat. Appl., 14:1–2 (2007), 57–73 | DOI | MR | Zbl
[10] “Minimaksnaya filtratsiya pri kvadratichnykh ogranicheniyakh I”, Differents. uravneniya, 12:8 (1976), 1434–1446 ; “Минимаксная фильтрация при квадратичных ограничениях II”:9, 1568–1579 ; “Минимаксная фильтрация при квадратичных ограничениях III”:12, 2149–2158 | MR | Zbl | Zbl | Zbl
[11] Ananev B.I., “O korrektsii dvizheniya pri kommunikatsionnykh ogranicheniyakh”, Avtomatika i telemekhanika, 2010, no. 3, 3–15 | Zbl
[12] Gusev M.I., “On optimal control problem for the bundle of trajectories of uncertain system”, LSSC 2009: Large-Scale Scientific Computing, Lecture Notes in Computer Sciences, 5910, 2010, 286–293 | DOI | Zbl
[13] N.N. Subbotina, E.A. Kolpakova, T.B. Tokmantsev, L.G. Shagalova, Metod kharakteristik dlya uravneniya Gamiltona - Yakobi - Bellmana, Izd-vo UrO RAN, Ekaterinburg, 2013, 244 pp.
[14] Li E.B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp.
[15] Vasilev F.P., Metody optimizatsii, Faktorial press, M., 2002, 824 pp.
[16] Ioffe A.D., “Metricheskaya regulyarnost i subdifferentsialnoe ischislenie”, Uspekhi mat. nauk, 55:3 (333) (2000), 103–162 | DOI | MR | Zbl
[17] Bekkenbakh E., Bellman R., Neravenstva, Nauka, M., 1965, 276 pp.
[18] Arutyunov A.V., Magaril-Ilyaev G.G., Tikhomirov V.M., Printsip maksimuma Pontryagina. Dokazatelstvo i prilozheniya, Faktorial press, M., 2006, 144 pp.
[19] Cockayne E. J., Hall G. W. C., “Plane motion of a particle subject to curvature constraints”, SIAM J. Control, 13:1 (1975), 197–220 | DOI | MR | Zbl
[20] Patsko V.S., Pyatko S.G., Fedotov A.A., “Trekhmernoe mnozhestvo dostizhimosti nelineinoi upravlyaemoi sistemy”, Izv. RAN. Teoriya i sistemy upravleniya, 2003, no. 3, 320–328 | MR | Zbl
[21] Gusev M.I., Zykov I.V., “A numerical method for solving linear-quadratic control problems with constraints”, Ural Math. J., 2:2 (2016), 108–116 | DOI