On extremal properties of the boundary points of reachable sets for control systems with integral constraints
Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 103-115 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is well known that any control that steers the trajectory of a control system to the boundary of the reachable set satisfies the Pontryagin maximum principle. This fact is valid for systems with pointwise constraints on the control. We consider a system with quadratic integral constraints on the control. The system is nonlinear in the state variables and linear in the control. It is shown that any admissible control that steers the system to the boundary of its reachable set is a local solution of some optimal control problem with integral quadratic functional if the corresponding linearized system is completely controllable. The proof of this fact is based on the Graves theorem on covering mappings. This implies the maximum principle for the controls that steer the trajectories to the boundary of the reachable set. We also discuss an algorithm for constructing the reachable set based on the maximum principle.
Keywords: control system, integral constraints, reachable set, maximum principle.
@article{TIMM_2017_23_1_a11,
     author = {M. I. Gusev and I. V. Zykov},
     title = {On extremal properties of the boundary points of reachable sets for control systems with integral constraints},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {103--115},
     year = {2017},
     volume = {23},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a11/}
}
TY  - JOUR
AU  - M. I. Gusev
AU  - I. V. Zykov
TI  - On extremal properties of the boundary points of reachable sets for control systems with integral constraints
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2017
SP  - 103
EP  - 115
VL  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a11/
LA  - ru
ID  - TIMM_2017_23_1_a11
ER  - 
%0 Journal Article
%A M. I. Gusev
%A I. V. Zykov
%T On extremal properties of the boundary points of reachable sets for control systems with integral constraints
%J Trudy Instituta matematiki i mehaniki
%D 2017
%P 103-115
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a11/
%G ru
%F TIMM_2017_23_1_a11
M. I. Gusev; I. V. Zykov. On extremal properties of the boundary points of reachable sets for control systems with integral constraints. Trudy Instituta matematiki i mehaniki, Tome 23 (2017) no. 1, pp. 103-115. http://geodesic.mathdoc.fr/item/TIMM_2017_23_1_a11/

[1] Krasovskii N.N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp.

[2] Kurzhanskii A.B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977, 392 pp. | MR

[3] Subbotin A. I., Ushakov V. N., “Alternativa dlya differentsialnoi igry sblizheniya-ukloneniya pri integralnykh ogranicheniyakh na upravleniya igrokov”, Prikl. matematika i mekhanika, 39:3 (1975), 387–396 | MR | Zbl

[4] Ukhobotov V.I., “Ob odnom klasse differentsialnykh igr s integralnymi ogranicheniyami”, Prikl. matematika i mekhanika, 41:5 (1977), 819–824 | MR

[5] Ushakov V.N., “Ekstremalnye strategii v differentsialnykh igrakh s integralnymi ogranicheniyami”, Prikl. matematika i mekhanika, 36:1 (1972), 15–23 | Zbl

[6] Polyak B.T., “Sonvexity of the reachable set of nonlinear systems under l2 bounded controls”, Dyn. Contin. Discrete Impuls. Syst. Ser. A: Math. Anal, 11 (2004), 255–267 | MR | Zbl

[7] Huseyin N., Huseyin A., “Compactness of the set of trajectories of the controllable system described by an affineintegral equation”, Appl. Math. Comput., 219 (2013), 8416–8424 | DOI | MR | Zbl

[8] Guseinov Kh. G., Nazlipinar A. S., “Attainable sets of the control system with limited resources”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:5 (2010), 261–268

[9] K.G. Guseinov, O. Ozer, E. Akyar, V.N. Ushakov, “The approximation of reachable sets of control systems with integral constraint on controls”, NoDEA Nonlinear Diff. Equat. Appl., 14:1–2 (2007), 57–73 | DOI | MR | Zbl

[10] “Minimaksnaya filtratsiya pri kvadratichnykh ogranicheniyakh I”, Differents. uravneniya, 12:8 (1976), 1434–1446 ; “Минимаксная фильтрация при квадратичных ограничениях II”:9, 1568–1579 ; “Минимаксная фильтрация при квадратичных ограничениях III”:12, 2149–2158 | MR | Zbl | Zbl | Zbl

[11] Ananev B.I., “O korrektsii dvizheniya pri kommunikatsionnykh ogranicheniyakh”, Avtomatika i telemekhanika, 2010, no. 3, 3–15 | Zbl

[12] Gusev M.I., “On optimal control problem for the bundle of trajectories of uncertain system”, LSSC 2009: Large-Scale Scientific Computing, Lecture Notes in Computer Sciences, 5910, 2010, 286–293 | DOI | Zbl

[13] N.N. Subbotina, E.A. Kolpakova, T.B. Tokmantsev, L.G. Shagalova, Metod kharakteristik dlya uravneniya Gamiltona - Yakobi - Bellmana, Izd-vo UrO RAN, Ekaterinburg, 2013, 244 pp.

[14] Li E.B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 576 pp.

[15] Vasilev F.P., Metody optimizatsii, Faktorial press, M., 2002, 824 pp.

[16] Ioffe A.D., “Metricheskaya regulyarnost i subdifferentsialnoe ischislenie”, Uspekhi mat. nauk, 55:3 (333) (2000), 103–162 | DOI | MR | Zbl

[17] Bekkenbakh E., Bellman R., Neravenstva, Nauka, M., 1965, 276 pp.

[18] Arutyunov A.V., Magaril-Ilyaev G.G., Tikhomirov V.M., Printsip maksimuma Pontryagina. Dokazatelstvo i prilozheniya, Faktorial press, M., 2006, 144 pp.

[19] Cockayne E. J., Hall G. W. C., “Plane motion of a particle subject to curvature constraints”, SIAM J. Control, 13:1 (1975), 197–220 | DOI | MR | Zbl

[20] Patsko V.S., Pyatko S.G., Fedotov A.A., “Trekhmernoe mnozhestvo dostizhimosti nelineinoi upravlyaemoi sistemy”, Izv. RAN. Teoriya i sistemy upravleniya, 2003, no. 3, 320–328 | MR | Zbl

[21] Gusev M.I., Zykov I.V., “A numerical method for solving linear-quadratic control problems with constraints”, Ural Math. J., 2:2 (2016), 108–116 | DOI