Construction of models in the form of stochastic Cauchy problems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 94-101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Using the example of the construction of a mathematical model for the heat transfer process in a one-dimensional rod whose lateral surface is subject to random heat sources, we demonstrate the structure of random processes reflecting the stochastic influence in the proposed model. We obtain an abstract stochastic Cauchy problem in the Ito form for an equation with cylindrical Wiener process and for an equation with Brownian sheet.
Keywords: stochastic Cauchy problem, Brownian sheet, cylindrical Wiener process.
@article{TIMM_2016_22_4_a9,
     author = {V. A. Bovkun},
     title = {Construction of models in the form of stochastic {Cauchy} problems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {94--101},
     year = {2016},
     volume = {22},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a9/}
}
TY  - JOUR
AU  - V. A. Bovkun
TI  - Construction of models in the form of stochastic Cauchy problems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 94
EP  - 101
VL  - 22
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a9/
LA  - ru
ID  - TIMM_2016_22_4_a9
ER  - 
%0 Journal Article
%A V. A. Bovkun
%T Construction of models in the form of stochastic Cauchy problems
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 94-101
%V 22
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a9/
%G ru
%F TIMM_2016_22_4_a9
V. A. Bovkun. Construction of models in the form of stochastic Cauchy problems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 94-101. http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a9/

[1] Allen E.J., Modeling with Ito stochastic differential equations, Math. Model. Theory Appl., 22, Springer, Dordrecht, 2007, 228 pp. | MR | Zbl

[2] Gardiner K.V., Stokhasticheskie metody v estestvennykh naukakh, Mir, M., 1986, 538 pp. | MR

[3] Da Prato G., Zabczyk J., Stochastic equations in infinite dimensions, Encyclopedia Math. Appl., no. 45, Cambridge Univ. Press, Cambridge, 2014, 493 pp. | MR | Zbl

[4] Melnikova I.V., Stochastic Cauchy problems in infinite dimensions. Regularized and Generalized Solutions, Monographs and Research Notes in Math., CRC Press, Boca Raton, 2016, 310 pp. | DOI | MR | Zbl

[5] Melnikova I.V., Filinkov A.I., Anufrieva U.A., “Abstract stochastic equations I. Classical and Generalized Solutions”, J. Math. Sci., 111:2 (2002), 3430–3475 | DOI | MR | Zbl

[6] Allen E.J., “Derivation of stochastic partial differential equations”, Stoch. Anal. Appl., 26:2 (2008), 357–378 | DOI | MR | Zbl

[7] Parfenenkova V.S., “Issledovanie stokhasticheskikh zadach matematicheskoi fiziki”, Tr. In-ta matematiki i mekhaniki UrO RAN, 18:2 (2012), 212–221

[8] Tikhonov A.N., Samarskii A.A., Uravneniya matematicheskoi fiziki, Nauka, M., 1977, 735 pp. | MR

[9] Petrov V.V., Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987, 320 pp. | MR

[10] Bulinskii A.V., Shiryaev A.N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2005, 400 pp.

[11] Lifshits M.A., Gaussovskie sluchainye funktsii, TViMC, K., 1995, 246 pp.