Moving object in $\mathbb{R}^2$ and group of observers
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 87-93
Voir la notice de l'article provenant de la source Math-Net.Ru
We formulate an extremal problem of constructing a trajectory of a moving object that is farthest from a group of observers with fixed visibility cones. Under some constraints on the arrangement of the observers we give a characterization and a method of construction of an optimal trajectory.
Keywords:
moving object, optimal trajectory.
Mots-clés : observer
Mots-clés : observer
@article{TIMM_2016_22_4_a8,
author = {V. I. Berdyshev},
title = {Moving object in $\mathbb{R}^2$ and group of observers},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {87--93},
publisher = {mathdoc},
volume = {22},
number = {4},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a8/}
}
V. I. Berdyshev. Moving object in $\mathbb{R}^2$ and group of observers. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 87-93. http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a8/