The $L_p$-Boundedness of Some Classes of Pseudo-Differential Operators on the $m$-Dimensional Torus
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 64-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove that certain classes of pseudo-differential operators with symbols that are nonsmooth in the space variable are $L_p$-bounded on the $m$-dimensional torus for $1 \leq p \leq \infty$.
Keywords: pseudo-differential operator, bounded operator, $m$-dimensional torus.
Mots-clés : symbol
@article{TIMM_2016_22_4_a6,
     author = {D. B. Bazarkhanov},
     title = {The $L_p${-Boundedness} of {Some} {Classes} of {Pseudo-Differential} {Operators} on the $m${-Dimensional} {Torus}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {64--80},
     year = {2016},
     volume = {22},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a6/}
}
TY  - JOUR
AU  - D. B. Bazarkhanov
TI  - The $L_p$-Boundedness of Some Classes of Pseudo-Differential Operators on the $m$-Dimensional Torus
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 64
EP  - 80
VL  - 22
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a6/
LA  - ru
ID  - TIMM_2016_22_4_a6
ER  - 
%0 Journal Article
%A D. B. Bazarkhanov
%T The $L_p$-Boundedness of Some Classes of Pseudo-Differential Operators on the $m$-Dimensional Torus
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 64-80
%V 22
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a6/
%G ru
%F TIMM_2016_22_4_a6
D. B. Bazarkhanov. The $L_p$-Boundedness of Some Classes of Pseudo-Differential Operators on the $m$-Dimensional Torus. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 64-80. http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a6/

[1] Khërmander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v 4 t., v. 3, Psevdodifferentsialnye operatory, Mir, M., 1987, 696 pp. | MR

[2] Kumano-go H., Pseudo-differential operators, MIT Press, Cambridge, 1982, 455 pp. | Zbl

[3] Stein E.M., Harmonic analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, 1993, 716 pp. | MR | Zbl

[4] Hormander L., “Pseudo-differential operators and hypoelliptic equations”, Singular Integrals (Chicago, IL, 1966), Proc. Sympos. Pure Math., 10, Amer. Math. Soc., Providence, 1967, 138–183 | DOI | MR

[5] Hormander L., “On the $L^2$ continuity of pseudo-differential operators”, Comm. Pure Appl. Math., 24 (1971), 529–535 | DOI | MR | Zbl

[6] Calderon A.P., Vaillancourt R., “A class of bounded pseudo-differential operators”, Proc. Nat. Acad. Sci. U.S.A, 6 (1972), 1185–1187 | DOI | MR

[7] Coifman R.R., Meyer Y., “Au-dela des operateurs pseudo-differentiels”, Asterisque, 57 (1978), 1–185 | MR

[8] Hounie J., “On The $L^2$ continuity of pseudo-differential operators”, Communications in Partial Diff. Eq., 11:7 (1986), 765–778 | DOI | MR | Zbl

[9] Ching C. H., “Pseudo-differential operators with nonregular symbols”, J. Diff. Eq., 11 (1972), 436–447 | DOI | MR | Zbl

[10] Rodino L., “On the boundedness of pseudo differential operators in the class $L_{\varrho,1}^{m}$”, Proc. Amer. Math. Soc., 58:1 (1976), 211–215 | MR

[11] Fefferman C., “$L^p$ bounds for pseudo-differential operators”, Israel J. Math., 14 (1973), 413–417 | DOI | MR | Zbl

[12] Nagase M., “The $L^p$-boundedness of pseudo-differential operators with non-regular symbols”, Communications in Partial Differential Equations, 2:10 (1977), 1045–1061 | DOI | MR | Zbl

[13] Kenig C.E., Staubach W., “$\Psi$-pseudodifferential operators and estimates for maximal oscillatory integrals”, Studia mathematica, 183:3 (2007), 249–258 | DOI | MR | Zbl

[14] Ruzhansky M., Turunen V., Pseudo-differential operators and symmetries: background analysis and advanced topics, Springer, Basel; Birkhauser, 2009, 710 pp. | MR

[15] Ruzhansky M., Turunen V., “Quantization of pseudo-differential operators on the torus”, J. Fourier Anal. Appl., 16:6 (2010), 943–982 | DOI | MR | Zbl

[16] Delgado J., “$L_p$-bounds for pseudo-differential operators on the torus Operator Theory”, Advances and Appl., 231 (2013), 103–116 | MR | Zbl

[17] Cardona D., “Weak type $(1,1)$ bounds for a class of periodic pseudo-differential operators”, J. Pseudo-Diff. Oper. Appl., 5:4 (2014), 507–515 | DOI | MR | Zbl

[18] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974, 336 pp.

[19] Kantorovich L.V., Akilov G.P., Funktsionalnyi analiz, Nauka, M., 1977, 752 pp. | MR

[20] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, 2-e izd., Nauka, M., 1977, 455 pp. | MR

[21] Stepanets A.I., “Priblizhenie nepreryvnykh periodicheskikh funktsii mnogikh peremennykh sfericheskimi srednimi Rissa”, Mat. zametki, 15:5 (1974), 821–832

[22] Schmeisser H.J., Triebel H., Topics in Fourier analysis and function spaces, J. Wiley Sons, Chichester, 1987, 300 pp. | MR | Zbl