One-sided integral approximations of the generalized Poisson kernel by trigonometric polynomials
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 53-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the generalized Poisson kernel $\Pi_{q,\alpha}=\cos(\alpha \pi/2)P +\sin(\alpha\pi/2)Q$ with $q\in(-1,1)$ and $\alpha\in\mathbb{R}$, which is a linear combination of the Poisson kernel $P(t)=1/2+\sum_{k=1}^\infty q^k\cos{kt}$ and the conjugate Poisson kernel $Q(t)=\sum\nolimits_{k=1}^\infty q^k\sin kt$. The values of the best upper and lower integral approximations of the kernel $\Pi_{q,\alpha}$ by trigonometric polynomials of order not exceeding a given number are found. The corresponding polynomials of the best one-sided approximation are obtained.
Keywords: constrained approximation, trigonometric polynomials, generalized Poisson kernel.
@article{TIMM_2016_22_4_a5,
     author = {A. G. Babenko and T. Z. Naum},
     title = {One-sided integral approximations of the generalized {Poisson} kernel by trigonometric polynomials},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {53--63},
     year = {2016},
     volume = {22},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a5/}
}
TY  - JOUR
AU  - A. G. Babenko
AU  - T. Z. Naum
TI  - One-sided integral approximations of the generalized Poisson kernel by trigonometric polynomials
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 53
EP  - 63
VL  - 22
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a5/
LA  - ru
ID  - TIMM_2016_22_4_a5
ER  - 
%0 Journal Article
%A A. G. Babenko
%A T. Z. Naum
%T One-sided integral approximations of the generalized Poisson kernel by trigonometric polynomials
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 53-63
%V 22
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a5/
%G ru
%F TIMM_2016_22_4_a5
A. G. Babenko; T. Z. Naum. One-sided integral approximations of the generalized Poisson kernel by trigonometric polynomials. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 53-63. http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a5/

[1] Babenko A.G., Naum T.Z., “Odnostoronnie priblizheniya v $L$ lineinoi kombinatsii yadra Puassona i sopryazhennogo yadra Puassona trigonometricheskimi polinomami”, Tr. Mezhdunar. letnei mat. shk.-konf. S.B. Stechkina po teorii funktsii, Poligrafiya OOO “Ofset”, Dushanbe, 2016, 44–49

[2] Baraboshkina N.A., “Priblizhenie v $L$ lineinoi kombinatsii yadra Puassona i ego sopryazhennogo trigonometricheskimi polinomami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:4 (2010), 79–86

[3] Baraboshkina N.A., “Priblizhenie garmonicheskikh funktsii algebraicheskimi mnogochlenami na okruzhnosti radiusa menshe edinitsy s nalichiem ogranichenii na edinichnoi okruzhnosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 19:2 (2013), 71–78 | MR

[4] Bernshtein S.N., Sobr. soch., v 4 t., v. 1, Konstruktivnaya teoriya funktsii (1905-1930), Izd-vo AN SSSR, M., 1952, 581 pp.

[5] Bushanskii A.V., “O nailuchshem v srednem garmonicheskom priblizhenii nekotorykh funktsii”, Issledovaniya po teorii priblizheniya funktsii i ikh prilozheniya, In-t matematiki AN USSR, Kiev, 1978, 2–37

[6] Zigmund A., Trigonometricheskie ryady, v 2 t., per. s angl., v. 1, Mir, M., 1965, 616 pp. ; т. 2, 538 с. | MR

[7] Doronin V.G., Ligun A.A., “Tochnye znacheniya nailuchshikh odnostoronnikh priblizhenii nekotorykh klassov periodicheskikh funktsii”, Izv. vuzov. Matematika, 1979, no. 8(207), 20–25 | MR | Zbl

[8] Korneichuk N.P., Ligun A.A., Doronin V.G., Approksimatsiya s ogranicheniyami, Naukova dumka, Kiev, 1982, 252 pp. | MR

[9] Krein M.G., “K teorii nailuchshego priblizheniya”, Dokl. AN SSSR, 18:4–5 (1938), 245–249

[10] Chebyshev P.L., “Voprosy o naimenshikh velichinakh, svyazannye s priblizhennym predstavleniem funktsii”, Poln. sobr. soch., v 5 t., v. 2, Matematicheskii analiz, Izd-vo AN SSSR, M.; L., 1947, 151–235

[11] Bojanic R., DeVore R., “On polynomials of best one-sided approximation”, Enseign. Math., 12 (1966), 139–164 | MR | Zbl

[12] Sz. Nagy B., “Uber gewisse Extremalfragen bei transformierten trigonometrischen Entwicklungen. I. Periodischer Fall”, Ber. Verh. sachs. Akad. Leipzig, 90 (1938), 103–134

[13] Stepanets A.I., Methods of approximation theory, VSP, Leiden; Boston, 2005, 919 pp. | MR | Zbl