@article{TIMM_2016_22_4_a4,
author = {N. N. Astaf'ev and A. V. Ivanov and S. P. Trofimov},
title = {The set of target vectors in a problem of semi-infinite linear programming with a duality gap},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {43--52},
year = {2016},
volume = {22},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a4/}
}
TY - JOUR AU - N. N. Astaf'ev AU - A. V. Ivanov AU - S. P. Trofimov TI - The set of target vectors in a problem of semi-infinite linear programming with a duality gap JO - Trudy Instituta matematiki i mehaniki PY - 2016 SP - 43 EP - 52 VL - 22 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a4/ LA - ru ID - TIMM_2016_22_4_a4 ER -
%0 Journal Article %A N. N. Astaf'ev %A A. V. Ivanov %A S. P. Trofimov %T The set of target vectors in a problem of semi-infinite linear programming with a duality gap %J Trudy Instituta matematiki i mehaniki %D 2016 %P 43-52 %V 22 %N 4 %U http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a4/ %G ru %F TIMM_2016_22_4_a4
N. N. Astaf'ev; A. V. Ivanov; S. P. Trofimov. The set of target vectors in a problem of semi-infinite linear programming with a duality gap. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 43-52. http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a4/
[1] Chames A., Cooper W.W., Kortanek K.O., “A duality theory for convex programs with convex constraints”, Bull. Amer. Math. Soc., 68:6 (1962), 605–608 | DOI | MR
[2] Goberna M.A., Lopez M.A., Linear semi-infinite optimization, Wiley, Chichester, 1998, 356 pp. | MR | Zbl
[3] Karney D.F., “Duality gaps in semi-infinite linear programming - an approximation problem”, Math. Progr., 20:1 (1981), 129–143 | DOI | MR | Zbl
[4] Soyster A.L., “A note on duality gaps in linear programming over convex sets”, J. Optim. Theory Appl., 13:4 (1974), 484–489 | DOI | MR | Zbl
[5] Duffin R.J., Karlovitz L.A., “An infinite linear program with a duality gap”, Management Sci., 12:1 (1965), 122–134 | DOI | MR | Zbl
[6] Glashoff K., Gustafson S.A., Linear optimization and approximation: An introduction to the theoretical analysis and numerical treatment of semi-infinite programs, Springer, N. Y., 1983, 212 pp. | MR | Zbl
[7] Chernikov S.N., Lineinye neravenstva, Nauka, M., 1968, 489 pp. | MR
[8] Trofimov S.P., “Kriterii razryva dvoistvennosti dlya polubeskonechnykh zadach lineinogo programmirovaniya”, Protivorechivye modeli optimizatsii, sb. nauch. tr., IMM UNTs AN SSSR, Sverdlovsk, 1987, 64–70 | MR
[9] Rockafellar R.T., Convex analysis, Princeton University Press, Princeton; New Jork, 1970, 260 pp. | MR | Zbl
[10] Kretschmer K.S., “Programmes in paired spaces”, Canad. J. Math., 13 (1961), 221–238 | DOI | MR | Zbl
[11] Astafev N.N., “Protivopolozhnye zadachi lineinogo programmirovaniya, dvoistvennost, prilozheniya k balansovoi modeli”, Diskretnaya optimizatsiya i issledovanie operatsii, materialy ross. konf., In-t matematiki SO RAN, Novosibirsk, 2007, 12–16
[12] Programma chislennogo analiza sootnoshenii dvoistvennosti. Repozitorii MATLAB-programmy (data obrascheniya: 20.08.2016) https://github.com/re3burn/DGA
[13] Astafev N.N., Beskonechnye sistemy lineinykh neravenstv, Nauka, M., 1991, 136 pp. | MR