@article{TIMM_2016_22_4_a3,
author = {R. R. Akopyan},
title = {Optimal recovery of a function analytic in a disk from approximately given values on a part of the boundary},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {29--42},
year = {2016},
volume = {22},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a3/}
}
TY - JOUR AU - R. R. Akopyan TI - Optimal recovery of a function analytic in a disk from approximately given values on a part of the boundary JO - Trudy Instituta matematiki i mehaniki PY - 2016 SP - 29 EP - 42 VL - 22 IS - 4 UR - http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a3/ LA - ru ID - TIMM_2016_22_4_a3 ER -
R. R. Akopyan. Optimal recovery of a function analytic in a disk from approximately given values on a part of the boundary. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 29-42. http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a3/
[1] Aizenberg L.A., Formuly Karlemana v kompleksnom analize. Pervye prilozheniya, Nauka, Novosibirsk, 1990, 248 pp. | MR
[2] Akopyan R.R., “Optimalnoe vosstanovlenie analiticheskoi funktsii po zadannym s pogreshnostyu granichnym znacheniyam”, Mat. zametki, 99:2 (2016), 163–170 | DOI | MR | Zbl
[3] Arestov V.V., “O ravnomernoi regulyarizatsii zadachi vychisleniya znachenii operatora”, Mat. zametki, 22:2 (1977), 231–244 | MR | Zbl
[4] Arestov V.V., Gabushin V.N., “Nailuchshee priblizhenie neogranichennykh operatorov ogranichennymi”, Izv. vuzov. Matematika, 1995, no. 11, 42–68 | MR | Zbl
[5] Arestov V.V., “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, Uspekhi mat. nauk, 51:6(312) (1996), 89–124 | DOI | MR | Zbl
[6] Arestov V.V., Mendelev A.S., “Trigonometric polynomials of least deviation from zero in measure and related problems”, J. Approx. Theory, 162:10 (2010), 1852–1878 | DOI | MR | Zbl
[7] Gabushin V.N., “Nailuchshee priblizhenie funktsionalov na nekotorykh mnozhestvakh”, Mat. zametki, 8:5 (1970), 551–562
[8] Goluzin G.M., Krylov V.I., “Obobschennaya formula Carleman`a i prilozhenie ee k analiticheskomu prodolzheniyu funktsii”, Mat. sb., 40:2 (1933), 144–149 | Zbl
[9] Goluzin G.M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 628 pp. | MR
[10] Lavrentev M.M., Romanov V.G., Shishatskii S.P., Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980, 286 pp. | MR
[11] Magaril-Ilyaev G. G., Osipenko K. Yu., “Ob optimalnom vosstanovlenii funktsionalov po netochnym dannym”, Mat. zametki, 50:6 (1991), 85–93 | MR
[12] Magaril-Ilyaev G.G., Tikhomirov V.M., Osipenko K.Yu., “Neopredelennost znaniya ob ob'ekte i tochnost metodov ego vosstanovleniya”, Probl. peredachi inform., 39:1 (2003), 118–133 | MR | Zbl
[13] Micchelli Ch.A., Rivlin Th.J., “A survey of optimal recovery”, Optimal Estimation in Approximation Theory, Proc. Internat. Sympos. (Freudenstadt, 1976), Plenum Press, N.Y. etc., 1977, 1–54 | MR
[14] Osipenko K.Yu., Optimal recovery of analytic functions, NJVA Science Publ. Inc., Huntington, 2000, 229 pp.
[15] Privalov I.I., Granichnye svoistva analiticheskikh funktsii, GITTL, M.; L., 1950, 336 pp. | MR
[16] Stechkin S.B., “Nailuchshee priblizhenie lineinykh operatorov”, Mat. zametki, 1:2 (1967), 137–148 | Zbl
[17] Szego G., “Uber die Randwerte einer analytischen Funktion”, Math. Ann., 84:3 (1921), 232–244 | DOI | MR | Zbl