Optimal recovery of a function analytic in a disk from approximately given values on a part of the boundary
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 29-42

Voir la notice de l'article provenant de la source Math-Net.Ru

We study three related extremal problems in the space $\mathcal{H}$ of functions analytic in the unit disk such that their boundary values on a part $\gamma_1$ of the unit circle $\Gamma$ belong to the space $L^\infty_{\psi_1}(\gamma_1)$ of functions essentially bounded on $\gamma_1$ with weight $\psi_1$ and their boundary values on the set $\gamma_0=\Gamma\setminus\gamma_1$ belong to the space $L^\infty_{\psi_0}(\gamma_0)$ with weight $\psi_0$. More exactly, on the class $Q$ of functions from $\mathcal{H}$ such that the norm $L^\infty_{\psi_0}(\gamma_0)$ of their boundary values on $\gamma_0$ does not exceed one, we solve the problem of optimal recovery of an analytic function on a subset of the unit disk from its boundary values on $\gamma_1$ specified approximately with respect to the norm $L^\infty_{\psi_1}(\gamma_1)$. We also study the problem of the optimal choice of the set $\gamma_1$ under a given fixed value of its measure. The problem of the best approximation of the operator of analytic continuation from a part of the boundary by linear bounded operators is investigated.
Keywords: optimal recovery of analytic functions, best approximation of unbounded operators, Szegő function.
@article{TIMM_2016_22_4_a3,
     author = {R. R. Akopyan},
     title = {Optimal recovery of a function analytic in a disk from approximately given values on a part of the boundary},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {29--42},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a3/}
}
TY  - JOUR
AU  - R. R. Akopyan
TI  - Optimal recovery of a function analytic in a disk from approximately given values on a part of the boundary
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 29
EP  - 42
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a3/
LA  - ru
ID  - TIMM_2016_22_4_a3
ER  - 
%0 Journal Article
%A R. R. Akopyan
%T Optimal recovery of a function analytic in a disk from approximately given values on a part of the boundary
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 29-42
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a3/
%G ru
%F TIMM_2016_22_4_a3
R. R. Akopyan. Optimal recovery of a function analytic in a disk from approximately given values on a part of the boundary. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 29-42. http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a3/