Optimal recovery of a function analytic in a disk from approximately given values on a part of the boundary
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 29-42 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study three related extremal problems in the space $\mathcal{H}$ of functions analytic in the unit disk such that their boundary values on a part $\gamma_1$ of the unit circle $\Gamma$ belong to the space $L^\infty_{\psi_1}(\gamma_1)$ of functions essentially bounded on $\gamma_1$ with weight $\psi_1$ and their boundary values on the set $\gamma_0=\Gamma\setminus\gamma_1$ belong to the space $L^\infty_{\psi_0}(\gamma_0)$ with weight $\psi_0$. More exactly, on the class $Q$ of functions from $\mathcal{H}$ such that the norm $L^\infty_{\psi_0}(\gamma_0)$ of their boundary values on $\gamma_0$ does not exceed one, we solve the problem of optimal recovery of an analytic function on a subset of the unit disk from its boundary values on $\gamma_1$ specified approximately with respect to the norm $L^\infty_{\psi_1}(\gamma_1)$. We also study the problem of the optimal choice of the set $\gamma_1$ under a given fixed value of its measure. The problem of the best approximation of the operator of analytic continuation from a part of the boundary by linear bounded operators is investigated.
Keywords: optimal recovery of analytic functions, best approximation of unbounded operators, Szegő function.
@article{TIMM_2016_22_4_a3,
     author = {R. R. Akopyan},
     title = {Optimal recovery of a function analytic in a disk from approximately given values on a part of the boundary},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {29--42},
     year = {2016},
     volume = {22},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a3/}
}
TY  - JOUR
AU  - R. R. Akopyan
TI  - Optimal recovery of a function analytic in a disk from approximately given values on a part of the boundary
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 29
EP  - 42
VL  - 22
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a3/
LA  - ru
ID  - TIMM_2016_22_4_a3
ER  - 
%0 Journal Article
%A R. R. Akopyan
%T Optimal recovery of a function analytic in a disk from approximately given values on a part of the boundary
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 29-42
%V 22
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a3/
%G ru
%F TIMM_2016_22_4_a3
R. R. Akopyan. Optimal recovery of a function analytic in a disk from approximately given values on a part of the boundary. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 29-42. http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a3/

[1] Aizenberg L.A., Formuly Karlemana v kompleksnom analize. Pervye prilozheniya, Nauka, Novosibirsk, 1990, 248 pp. | MR

[2] Akopyan R.R., “Optimalnoe vosstanovlenie analiticheskoi funktsii po zadannym s pogreshnostyu granichnym znacheniyam”, Mat. zametki, 99:2 (2016), 163–170 | DOI | MR | Zbl

[3] Arestov V.V., “O ravnomernoi regulyarizatsii zadachi vychisleniya znachenii operatora”, Mat. zametki, 22:2 (1977), 231–244 | MR | Zbl

[4] Arestov V.V., Gabushin V.N., “Nailuchshee priblizhenie neogranichennykh operatorov ogranichennymi”, Izv. vuzov. Matematika, 1995, no. 11, 42–68 | MR | Zbl

[5] Arestov V.V., “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, Uspekhi mat. nauk, 51:6(312) (1996), 89–124 | DOI | MR | Zbl

[6] Arestov V.V., Mendelev A.S., “Trigonometric polynomials of least deviation from zero in measure and related problems”, J. Approx. Theory, 162:10 (2010), 1852–1878 | DOI | MR | Zbl

[7] Gabushin V.N., “Nailuchshee priblizhenie funktsionalov na nekotorykh mnozhestvakh”, Mat. zametki, 8:5 (1970), 551–562

[8] Goluzin G.M., Krylov V.I., “Obobschennaya formula Carleman`a i prilozhenie ee k analiticheskomu prodolzheniyu funktsii”, Mat. sb., 40:2 (1933), 144–149 | Zbl

[9] Goluzin G.M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 628 pp. | MR

[10] Lavrentev M.M., Romanov V.G., Shishatskii S.P., Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980, 286 pp. | MR

[11] Magaril-Ilyaev G. G., Osipenko K. Yu., “Ob optimalnom vosstanovlenii funktsionalov po netochnym dannym”, Mat. zametki, 50:6 (1991), 85–93 | MR

[12] Magaril-Ilyaev G.G., Tikhomirov V.M., Osipenko K.Yu., “Neopredelennost znaniya ob ob'ekte i tochnost metodov ego vosstanovleniya”, Probl. peredachi inform., 39:1 (2003), 118–133 | MR | Zbl

[13] Micchelli Ch.A., Rivlin Th.J., “A survey of optimal recovery”, Optimal Estimation in Approximation Theory, Proc. Internat. Sympos. (Freudenstadt, 1976), Plenum Press, N.Y. etc., 1977, 1–54 | MR

[14] Osipenko K.Yu., Optimal recovery of analytic functions, NJVA Science Publ. Inc., Huntington, 2000, 229 pp.

[15] Privalov I.I., Granichnye svoistva analiticheskikh funktsii, GITTL, M.; L., 1950, 336 pp. | MR

[16] Stechkin S.B., “Nailuchshee priblizhenie lineinykh operatorov”, Mat. zametki, 1:2 (1967), 137–148 | Zbl

[17] Szego G., “Uber die Randwerte einer analytischen Funktion”, Math. Ann., 84:3 (1921), 232–244 | DOI | MR | Zbl