A method for the construction of analogs of wavelets by means of trigonometric $B$-splines
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 320-327 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We construct an analog of two-scale relations for basis trigonometric splines with uniform knots corresponding to a linear differential operator of order $2r+1$ with constant coefficients $ {\mathcal L}_{2r+1}(D)=D(D^2+\alpha_1^2)(D^2+\alpha_2^2)\ldots (D^2+\alpha_r^2), $ where $\alpha_1,\alpha_2,\ldots,\alpha_r$ are arbitrary positive numbers. The properties of embedded subspaces of trigonometric splines are analyzed.
Keywords: two-scale relation, trigonometric $B$-spline, differential operator, wavelets.
@article{TIMM_2016_22_4_a29,
     author = {V. T. Shevaldin},
     title = {A method for the construction of analogs of wavelets by means of trigonometric $B$-splines},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {320--327},
     year = {2016},
     volume = {22},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a29/}
}
TY  - JOUR
AU  - V. T. Shevaldin
TI  - A method for the construction of analogs of wavelets by means of trigonometric $B$-splines
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 320
EP  - 327
VL  - 22
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a29/
LA  - ru
ID  - TIMM_2016_22_4_a29
ER  - 
%0 Journal Article
%A V. T. Shevaldin
%T A method for the construction of analogs of wavelets by means of trigonometric $B$-splines
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 320-327
%V 22
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a29/
%G ru
%F TIMM_2016_22_4_a29
V. T. Shevaldin. A method for the construction of analogs of wavelets by means of trigonometric $B$-splines. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 320-327. http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a29/

[1] Chui Ch., Vvedenie v veivlety, Per. s angl., Mir, M., 2001, 412 pp.

[2] Novikov I.Ya., Protasov V.Yu., Skopina M.L., Teoriya vspleskov, Fizmatlit, M., 2005, 616 pp. | MR

[3] Malla S., Veivlety v obrabotke signalov, Mir, M., 2005, 671 pp.

[4] Dobeshi I., Desyat lektsii po veivletam, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.; Izhevsk, 2001, 461 pp.

[5] Zavyalov Yu.S., Kvasov B.I., Miroshnichenko V.L., Metody splain-funktsii, Nauka, M., 1980, 352 pp. | MR

[6] Morsche H.G. ter, Interpolation and extremal properties of $\cal L$-spline functions, Dissertation, Technische Hogeschool Eindhoven, Eindhoven, 1982, 124 pp. | MR | Zbl

[7] Shevaldin V.T., Approksimatsiya lokalnymi splainami, Izd-vo UrO RAN, Ekaterinburg, 2014, 198 pp.

[8] Pytkeev E.G., Shevaldin V.T., “Dvukhmasshtabnye sootnosheniya dlya $B$-$\cal L$-splainov s ravnomernymi uzlami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:4 (2015), 234–243 | MR

[9] Shevaldin V.T., “Ob odnoi zadache ekstremalnoi interpolyatsii”, Mat. zametki, 29:4 (1981), 603–622 | MR | Zbl

[10] Sharma A., Tsimbalario I., “Nekotorye lineinye differentsialnye operatory i obobschennye raznosti”, Mat. zametki, 21:2 (1977), 161–173 | MR

[11] Schoenberg I.J., “On trigonometric spline interpolation”, J. Math. Mech., 13 (1964), 795–825 | MR | Zbl