A method for the construction of analogs of wavelets by means of trigonometric $B$-splines
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 320-327
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct an analog of two-scale relations for basis trigonometric splines with uniform knots corresponding to a linear differential operator of order $2r+1$ with constant coefficients $ {\mathcal L}_{2r+1}(D)=D(D^2+\alpha_1^2)(D^2+\alpha_2^2)\ldots (D^2+\alpha_r^2), $ where $\alpha_1,\alpha_2,\ldots,\alpha_r$ are arbitrary positive numbers. The properties of embedded subspaces of trigonometric splines are analyzed.
Keywords:
two-scale relation, trigonometric $B$-spline, differential operator, wavelets.
@article{TIMM_2016_22_4_a29,
author = {V. T. Shevaldin},
title = {A method for the construction of analogs of wavelets by means of trigonometric $B$-splines},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {320--327},
publisher = {mathdoc},
volume = {22},
number = {4},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a29/}
}
TY - JOUR AU - V. T. Shevaldin TI - A method for the construction of analogs of wavelets by means of trigonometric $B$-splines JO - Trudy Instituta matematiki i mehaniki PY - 2016 SP - 320 EP - 327 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a29/ LA - ru ID - TIMM_2016_22_4_a29 ER -
V. T. Shevaldin. A method for the construction of analogs of wavelets by means of trigonometric $B$-splines. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 320-327. http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a29/