The Jackson–Stechkin inequality with nonclassical modulus of continuity
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 311-319 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We obtain an estimate for the best mean-square approximation $E_{n-1}(f)$ of an arbitrary complex-valued $2\pi$-periodic function $f\in L_{2}$ by the subspace $\Im_{2n-1}$ of trigonometric polynomials of degree at most $n-1$ in terms of the nonclassical modulus of continuity $\omega_{2m-1}^{*}(f,\delta)_{2}$ generated by a finite-difference operator of order $2m-1$ with alternating constant coefficients equal to 1 in absolute value. The following relation is proved for any natural $n\ge1$ and $m\ge2$: $$ \sup_{\substack{f\in L_{2}\\ f\ne const}}\frac{E_{n-1}(f)}{\left(\displaystyle\frac{n}{2}\int_{0}^{\pi/n}\Big\{\omega_{2m-1}^{*}(f,t)\Big\}^{2}\sin ntdt\right)^{1/2}}={\frac{1}{\sqrt{2}}\Big(m-\sum\limits_{l=1}^{m-1}\frac{l}{4(m-l)^{2}-1}\Big)^{-1/2}}. $$
Keywords: best approximation, nonclassical modulus of continuity, Jackson–Stechkin inequality, convex function.
@article{TIMM_2016_22_4_a28,
     author = {M. Sh. Shabozov and A. D. Farozova},
     title = {The {Jackson{\textendash}Stechkin} inequality with nonclassical modulus of continuity},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {311--319},
     year = {2016},
     volume = {22},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a28/}
}
TY  - JOUR
AU  - M. Sh. Shabozov
AU  - A. D. Farozova
TI  - The Jackson–Stechkin inequality with nonclassical modulus of continuity
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 311
EP  - 319
VL  - 22
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a28/
LA  - ru
ID  - TIMM_2016_22_4_a28
ER  - 
%0 Journal Article
%A M. Sh. Shabozov
%A A. D. Farozova
%T The Jackson–Stechkin inequality with nonclassical modulus of continuity
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 311-319
%V 22
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a28/
%G ru
%F TIMM_2016_22_4_a28
M. Sh. Shabozov; A. D. Farozova. The Jackson–Stechkin inequality with nonclassical modulus of continuity. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 311-319. http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a28/

[1] Korneichuk N.P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987, 424 pp. | MR

[2] Chernykh N.I., “O neravenstve Dzheksona v $L_{2}$”, Tr. MIAN SSSR, 88, 1967, 71–74

[3] Chernykh N.I., “O nailuchshem priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami v $L_{2}$”, Mat. zametki, 2:5 (1967), 513–522

[4] Babenko A.G., “O neravenstve Dzheksona-Stechkina dlya nailuchshikh $L^{2}$-priblizhenii funktsii trigonometricheskimi polinomami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 7:1 (2001), 30–46

[5] Vasilev S.N., “Neravenstvo Dzheksona-Stechkina v $L_{2}[-\pi,\pi]$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 7:1 (2001), 75–84

[6] Vasilev S.N., “Tochnoe neravenstvo Dzheksona-Stechkina v $L^2$ dlya nailuchshikh priblizhenii trigonometricheskimi polinomami”, Elektron. zhurn. “Issledovano v Rossii”, 2002, 140, 1577–1586 http://wwwinfo.jinr.ru/invest_in_Russia.html

[7] Kozko A.I., Rozhdestvenskii A.V., “O neravenstve Dzheksona v $L_2$ s obobschennym modulem nepreryvnosti”, Mat. zametki, 73:5 (2003), 783–788 | DOI | MR | Zbl

[8] Kozko A.I., Rozhdestvenskii A.V., “O neravenstve Dzheksona v $L_2$ s obobschennym modulem nepreryvnosti”, Mat. sb., 195:8 (2004), 3–46 | DOI | MR | Zbl

[9] Baraboshkina N.A., “Neravenstvo Dzheksona-Stechkina s neklassicheskim modulem nepreryvnosti”, Tr. In-ta matematiki i mekhaniki UrO RAN, 7:1 (2001), 62–66 | MR

[10] Shabozov M.Sh., Yusupov G.A., “Nailuchshie polinomialnye priblizheniya v $L_{2}$ nekotorykh klassov $2\pi$-periodicheskikh funktsii i tochnye znacheniya ikh poperechnikov”, Mat. zametki, 90:5 (2011), 764–775 | DOI | MR | Zbl

[11] Shabozov M.Sh., Yusupov G.A., “Widths of sertain slasses of periodic functions in $L_2$”, J. Approx. Theory, 164:1 (2012), 869–878 | DOI | MR | Zbl

[12] Korneichuk N.P., Ligun A.A., Doronin V.G., Approksimatsiya s ogranicheniyami, Naukova dumka, Kiev, 1982, 252 pp. | MR