Best approximations and widths of some classes of convolutions in $L_{2}$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 284-294

Voir la notice de l'article provenant de la source Math-Net.Ru

We find tight upper bounds for the best approximations by trigonometric polynomials of certain classes of periodic functions representable as convolutions with structural characteristics defined by various modifications of m-th order moduli of continuity in the metric of $L_{2}$. We also find exact values for the $n$-widths of convolution classes given by such smoothness characteristics.
Keywords: best approximation, periodic function, trigonometric polynomial, modulus of continuity of $m$th order, $n$-widths.
@article{TIMM_2016_22_4_a26,
     author = {K.Tukhliev},
     title = {Best approximations and widths of some classes of convolutions in $L_{2}$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {284--294},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a26/}
}
TY  - JOUR
AU  - K.Tukhliev
TI  - Best approximations and widths of some classes of convolutions in $L_{2}$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 284
EP  - 294
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a26/
LA  - ru
ID  - TIMM_2016_22_4_a26
ER  - 
%0 Journal Article
%A K.Tukhliev
%T Best approximations and widths of some classes of convolutions in $L_{2}$
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 284-294
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a26/
%G ru
%F TIMM_2016_22_4_a26
K.Tukhliev. Best approximations and widths of some classes of convolutions in $L_{2}$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 284-294. http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a26/