Best approximations and widths of some classes of convolutions in $L_{2}$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 284-294
Voir la notice de l'article provenant de la source Math-Net.Ru
We find tight upper bounds for the best approximations by trigonometric polynomials of certain classes of periodic functions representable as convolutions with structural characteristics defined by various modifications of m-th order moduli of continuity in the metric of $L_{2}$. We also find exact values for the $n$-widths of convolution classes given by such smoothness characteristics.
Keywords:
best approximation, periodic function, trigonometric polynomial, modulus of continuity of $m$th order, $n$-widths.
@article{TIMM_2016_22_4_a26,
author = {K.Tukhliev},
title = {Best approximations and widths of some classes of convolutions in $L_{2}$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {284--294},
publisher = {mathdoc},
volume = {22},
number = {4},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a26/}
}
K.Tukhliev. Best approximations and widths of some classes of convolutions in $L_{2}$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 284-294. http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a26/