Best approximations and widths of some classes of convolutions in $L_{2}$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 284-294 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We find tight upper bounds for the best approximations by trigonometric polynomials of certain classes of periodic functions representable as convolutions with structural characteristics defined by various modifications of m-th order moduli of continuity in the metric of $L_{2}$. We also find exact values for the $n$-widths of convolution classes given by such smoothness characteristics.
Keywords: best approximation, periodic function, trigonometric polynomial, modulus of continuity of $m$th order, $n$-widths.
@article{TIMM_2016_22_4_a26,
     author = {K.Tukhliev},
     title = {Best approximations and widths of some classes of convolutions in $L_{2}$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {284--294},
     year = {2016},
     volume = {22},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a26/}
}
TY  - JOUR
AU  - K.Tukhliev
TI  - Best approximations and widths of some classes of convolutions in $L_{2}$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 284
EP  - 294
VL  - 22
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a26/
LA  - ru
ID  - TIMM_2016_22_4_a26
ER  - 
%0 Journal Article
%A K.Tukhliev
%T Best approximations and widths of some classes of convolutions in $L_{2}$
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 284-294
%V 22
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a26/
%G ru
%F TIMM_2016_22_4_a26
K.Tukhliev. Best approximations and widths of some classes of convolutions in $L_{2}$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 284-294. http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a26/

[1] Abilov V.A., Abilova F.V., “Nekotorye voprosy priblizheniya $2\pi$-periodicheskikh funktsii summami Fure v prostranstve $L_{2}(2\pi)$”, Mat. zametki, 76:6 (2004), 803–811 | DOI | MR | Zbl

[2] Shabozov M.Sh., Yusupov G.A., “Tochnye konstanty v neravenstvakh tipa Dzheksona i tochnye znacheniya poperechnikov nekotorykh klassov funktsii v $L_{2}$”, Sib. mat. zhurn., 52:6 (2011), 1414–1427 | MR | Zbl

[3] Vakarchuk S.B., Zabutnaya V.I., “Neravenstva tipa Dzheksona–Stechkina dlya spetsialnykh modulei nepreryvnosti i poperechniki funktsionalnykh klassov v prostranstve $L_2$”, Mat. zametki, 92:4 (2012), 497–514 | DOI | MR | Zbl

[4] Ligun A.A., “Nekotorye neravenstva mezhdu nailuchshimi priblizheniyami i modulyami nepreryvnosti v prostranstve $L_{2}$”, Mat. zametki, 24:6 (1978), 785–792 | MR | Zbl

[5] Pinkus A., $n$-widths in approximation theory, Springer-Verlag, Berlin, 1985, 291 pp. | MR | Zbl

[6] Tikhomirov V.M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976, 325 pp. | MR

[7] Stechkin S.B., “O nailuchshem priblizhenii nekotorykh klassov periodicheskikh funktsii trigonometricheskimi polinomami”, Izv. AN SSSR. Ser. matematicheskaya, 20:5 (1956), 643–648 | Zbl

[8] Korneichuk N.P., Ligun A.A., Doronin V.G., Approksimatsiya s ogranicheniyami, Naukova dumka, Kiev, 1982, 252 pp. | MR