Constructive sparse trigonometric approximations of functions with small mixed smoothness
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 247-253 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Exact order bounds are obtained for the best $m$-term trigonometric approximation (in the integral metric) of periodic functions with small mixed smoothness from classes close to Nikol'skii-Besov type classes. The obtained bounds differ (under identical constraints on the smoothness) from the corresponding bounds of the best $m$-term trigonometric approximation of Besov classes of mixed smoothness established by A.S. Romanyuk. The upper bound is realized by a constructive method based on a greedy algorithm.
Keywords: nonlinear approximation, sparse approximation, mixed smoothness, order bounds.
@article{TIMM_2016_22_4_a22,
     author = {S. A. Stasyuk},
     title = {Constructive sparse trigonometric approximations of functions with small mixed smoothness},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {247--253},
     year = {2016},
     volume = {22},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a22/}
}
TY  - JOUR
AU  - S. A. Stasyuk
TI  - Constructive sparse trigonometric approximations of functions with small mixed smoothness
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 247
EP  - 253
VL  - 22
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a22/
LA  - ru
ID  - TIMM_2016_22_4_a22
ER  - 
%0 Journal Article
%A S. A. Stasyuk
%T Constructive sparse trigonometric approximations of functions with small mixed smoothness
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 247-253
%V 22
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a22/
%G ru
%F TIMM_2016_22_4_a22
S. A. Stasyuk. Constructive sparse trigonometric approximations of functions with small mixed smoothness. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 247-253. http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a22/

[1] Romanyuk A.S., “Nailuchshie $M$-chlennye trigonometricheskie priblizheniya klassov Besova periodicheskikh funktsii mnogikh peremennykh”, Izv. RAN. Ser. matematicheskaya, 67:2 (2003), 61–100 | DOI | MR | Zbl

[2] Temlyakov V.N., “Konstruktivnye razrezhennye trigonometricheskie priblizheniya i drugie zadachi dlya funktsii smeshannoi gladkosti”, Mat. sb., 206:11 (2015), 131–160 | DOI | MR

[3] Temlyakov V.N., “Constructive sparse trigonometric approximation for functions with small mixed smoothness”, 2015, 30 pp., arXiv: 1503.00282

[4] Stasyuk S.A., “Naikrasche $m$-chlenne trigonometrichne nablizhennya periodichnikh funktsii maloï mishanoï gladkosti z klasiv tipu Nikolskogo-B$\epsilon$sova”, Ukr. mat. zhurn., 68:7 (2016), 983–1003

[5] Temlyakov V.N., “Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi”, Tr. MIAN SSSR, 178 (1986), 1–112 | MR | Zbl

[6] Lizorkin P.I., Nikolskii S.M., “Prostranstva funktsii smeshannoi gladkosti s dekompozitsionnoi tochki zreniya”, Tr. MIAN SSSR, 187 (1989), 143–161 | MR

[7] Romanyuk A.S., “Approksimativnye kharakteristiki klassov periodicheskikh funktsii mnogikh peremennykh”, Pratsi Institutu matematiki NAN Ukraïni. Kiïv 353 s., 92 (2012)

[8] D. Dung, Temlyakov V.N., Ullrich T., “Hyperbolic cross approximation”, 2016, 154 pp., arXiv: https://arxiv.org/pdf/1601.03978v1.pdf

[9] Bazarkhanov D.B., “Nelineinye trigonometricheskie piblizheniya klassov funktsii mnogikh peremennykh”, Tr. MIAN, 293, 2016, 8–42 | Zbl

[10] Stasyuk S.A., “Priblizhenie nekotorykh gladkostnykh klassov periodicheskikh funktsii mnogikh peremennykh polinomami po tenzornoi sisteme Khaara”, Tr. In-ta matematiki i mekhaniki UrO RAN, 21:4 (2015), 251–260 | MR

[11] Stasyuk S.A., “Best $m$-term trigonometric approximation of periodic functions of several variables from Nikol'skii–Besov classes for small smoothness”, J. Approx. Theory, 177 (2014), 1–16 | DOI | MR