Splines for four-point rational interpolants
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 233-246 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For continuous functions, we construct four-point rational interpolants and, for them, rational interpolation splines. For continuous functions, continuously differentiable functions, and their derivatives up to the second order, we obtain convergence bounds for such splines and their derivatives.
Keywords: splines, rational splines.
Mots-clés : interpolation splines
@article{TIMM_2016_22_4_a21,
     author = {A.-R. K. Ramazanov and V. G. Magomedova},
     title = {Splines for four-point rational interpolants},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {233--246},
     year = {2016},
     volume = {22},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a21/}
}
TY  - JOUR
AU  - A.-R. K. Ramazanov
AU  - V. G. Magomedova
TI  - Splines for four-point rational interpolants
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 233
EP  - 246
VL  - 22
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a21/
LA  - ru
ID  - TIMM_2016_22_4_a21
ER  - 
%0 Journal Article
%A A.-R. K. Ramazanov
%A V. G. Magomedova
%T Splines for four-point rational interpolants
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 233-246
%V 22
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a21/
%G ru
%F TIMM_2016_22_4_a21
A.-R. K. Ramazanov; V. G. Magomedova. Splines for four-point rational interpolants. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 233-246. http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a21/

[1] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i ee prilozheniya, Mir, M., 1972, 319 pp. | MR

[2] Stechkin S.B., Subbotin Yu.N., Dobavleniya k knige Dzh. Alberg, E. Nilson, Dzh. Uolsh. Teoriya splainov i ee prilozheniya, Mir, M., 1972, 317 pp. | MR

[3] Stechkin S.B., Subbotin Yu.N., Splainy v vychislitelnoi matematike, Nauka, M., 1976, 248 pp. | MR

[4] Korneichuk N.P., Splainy v teorii priblizheniya, Nauka, M., 1984, 352 pp. | MR

[5] Edeo A., Gofe G., Tefera V., “Shape preserving $C^2$ rational cubic spline interpolation”, American Scientific Research Journal for Engineering, Technology and Sciences, 12:1 (2015), 110–122

[6] Subbotin Yu.N., “Variatsii na temu splainov”, Fundament. i prikl. matematika, 3:4 (1997), 1043–1058 | MR | Zbl

[7] Privalov Al.A., “O skhodimosti kubicheskikh interpolyatsionnykh splainov k nepreryvnoi funktsii”, Mat. zametki, 25:5 (1979), 681–700 | MR | Zbl

[8] Ramazanov A.-R.K., Magomedova V.G., “Splainy po ratsionalnym interpolyantam”, Dagestan. elektron. mat. izv., 2015, no. 4, 22–31 | MR

[9] Ramazanov A.-R.K., Magomedova V.G., “Interpolyatsionnye ratsionalnye splainy”, Aktualnye problemy matematiki i smezhnye voprosy, materialy Mezhdunar. nauch. konf., Dagestan. gos. tekhn. un-t., Makhachkala, 2016, 68–71