On approximation orders of functions of several variables in the Lorentz space
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 13-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the anisotropic Lorentz space of periodic functions. Sufficient conditions are proved for a function to belong to the anisotropic Lorentz space. Estimates for the order of approximation by trigonometric polynomials of the Nikol'skii-Besov class in the anisotropic Lorentz space are established.
Keywords: Lorentz space, best approximation.
Mots-clés : Nikol'skii-Besov class
@article{TIMM_2016_22_4_a2,
     author = {G. A. Akishev},
     title = {On approximation orders of functions of several variables in the {Lorentz} space},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {13--28},
     year = {2016},
     volume = {22},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a2/}
}
TY  - JOUR
AU  - G. A. Akishev
TI  - On approximation orders of functions of several variables in the Lorentz space
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2016
SP  - 13
EP  - 28
VL  - 22
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a2/
LA  - ru
ID  - TIMM_2016_22_4_a2
ER  - 
%0 Journal Article
%A G. A. Akishev
%T On approximation orders of functions of several variables in the Lorentz space
%J Trudy Instituta matematiki i mehaniki
%D 2016
%P 13-28
%V 22
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a2/
%G ru
%F TIMM_2016_22_4_a2
G. A. Akishev. On approximation orders of functions of several variables in the Lorentz space. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 13-28. http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a2/

[1] Blozinski A. P., “Multivariate rearragements and Banach function spaces with mixed norms”, Trans. Amer. Math. Society, 263:1 (1981), 146–167 | DOI | MR

[2] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977, 456 pp. | MR

[3] Nikolskii S. M., “Funktsii s dominiruyuschei smeshannoi proizvodnoi, udovletvoryayuschei kratnomu usloviyu Geldera”, Sib. mat. zhurn., 4:6 (1963), 1342–1364

[4] Amanov T. I., Prostranstva differentsiruemykh funktsii s dominiruyuschei smeshannoi proizvodnoi, Nauka, Alma-Ata, 1976, 224 pp. | MR

[5] Babenko K.I., “O priblizhenii odnogo klassa periodicheskikh funktsii mnogikh peremennykh trigonometricheskimi mnogochlenami”, Dokl. AN SSSR, 132:5 (1960), 982–985 | MR | Zbl

[6] Tikhomirov V.M., “Teoriya priblizhenii”, Sovremennye problemy matematiki, M., 1987, 103–270 | MR

[7] Dinh Dung , Temlyakov V.N., Ullrich T., “Hyperbolic cross approximation”, 2016, 154 pp., arXiv: http://arxiv.org/pdf/1601.03978v1

[8] Akishev G., “Priblizhenie funktsionalnykh klassov v prostranstvakh so smeshannoi normoi”, Mat. sb., 197:8 (2006), 17–40 | DOI | MR | Zbl

[9] Bekmaganbetov K. A., “O poryadkakh priblizheniya klassa Besova v metrike anizotropnykh prostranstv Lorentsa”, Ufim. mat. zhurn., 1:2 (2009), 9–16 | Zbl

[10] Potapov M.K., “Teoremy vlozheniya v smeshannoi metrike”, Tr. MIAN, 156, 1980, 143–156 | Zbl

[11] Besov O.V., Ilin V.P., Nikolskii S.M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975, 480 pp. | MR

[12] Akishev G., “O poryadkakh priblizheniya klassov v prostranstvakh Lorentsa”, Sib. elektron. mat. izv., 5 (2008), 51–67 | MR | Zbl

[13] Nursultanov E.D., “Neravenstva raznykh metrik S.M. Nikolskogo i svoistva posledovatelnosti norm summ Fure funktsii iz prostranstva Lorentsa”, Tr. MIAN, 255 (2006), 1–18

[14] Johansson H., “Embedding of $H_{p}^{\omega}$ in some Lorentz spases”, Research Report University Umea, 6 (1975), 1–36