On approximation orders of functions of several variables in the Lorentz space
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 13-28
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider the anisotropic Lorentz space of periodic functions. Sufficient conditions are proved for a function to belong to the anisotropic Lorentz space. Estimates for the order of approximation by trigonometric polynomials of the Nikol'skii-Besov class in the anisotropic Lorentz space are established.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Lorentz space, best approximation.
Mots-clés : Nikol'skii-Besov class
                    
                  
                
                
                Mots-clés : Nikol'skii-Besov class
@article{TIMM_2016_22_4_a2,
     author = {G. A. Akishev},
     title = {On approximation orders of functions of several variables in the {Lorentz} space},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {13--28},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a2/}
}
                      
                      
                    TY - JOUR AU - G. A. Akishev TI - On approximation orders of functions of several variables in the Lorentz space JO - Trudy Instituta matematiki i mehaniki PY - 2016 SP - 13 EP - 28 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a2/ LA - ru ID - TIMM_2016_22_4_a2 ER -
G. A. Akishev. On approximation orders of functions of several variables in the Lorentz space. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 22 (2016) no. 4, pp. 13-28. http://geodesic.mathdoc.fr/item/TIMM_2016_22_4_a2/
